hkivancoral's picture
End of training
954f737
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_adamax_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8885191347753744

smids_10x_deit_tiny_adamax_0001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0252
  • Accuracy: 0.8885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2345 1.0 750 0.2862 0.8852
0.1226 2.0 1500 0.3492 0.8819
0.0786 3.0 2250 0.4125 0.8785
0.0821 4.0 3000 0.6690 0.8569
0.0058 5.0 3750 0.6467 0.8869
0.0246 6.0 4500 0.7107 0.8819
0.0249 7.0 5250 0.7670 0.8852
0.0023 8.0 6000 0.8535 0.8952
0.0094 9.0 6750 0.9434 0.8819
0.0202 10.0 7500 1.0037 0.8835
0.0073 11.0 8250 1.0395 0.8802
0.0 12.0 9000 0.9154 0.8935
0.0001 13.0 9750 1.0585 0.8785
0.0048 14.0 10500 0.9392 0.8952
0.0002 15.0 11250 0.9865 0.8885
0.0 16.0 12000 1.1010 0.8885
0.0 17.0 12750 1.0500 0.8968
0.0 18.0 13500 1.0366 0.8968
0.0 19.0 14250 0.9974 0.8735
0.0 20.0 15000 1.0266 0.8935
0.0 21.0 15750 0.9740 0.9018
0.0135 22.0 16500 1.0163 0.8935
0.0062 23.0 17250 1.0796 0.8835
0.0 24.0 18000 1.0547 0.8852
0.0 25.0 18750 1.0544 0.8918
0.0 26.0 19500 0.9809 0.8952
0.0089 27.0 20250 1.0367 0.8918
0.0 28.0 21000 1.0326 0.8835
0.0 29.0 21750 1.0069 0.8935
0.0 30.0 22500 1.0290 0.8968
0.0 31.0 23250 1.0034 0.8935
0.0 32.0 24000 0.9398 0.8985
0.0 33.0 24750 1.0178 0.8935
0.0 34.0 25500 1.0300 0.8902
0.0 35.0 26250 1.0140 0.8918
0.0 36.0 27000 1.0115 0.8902
0.0074 37.0 27750 1.0130 0.8918
0.0 38.0 28500 1.0096 0.8902
0.0 39.0 29250 1.0259 0.8935
0.0 40.0 30000 1.0330 0.8918
0.0 41.0 30750 1.0283 0.8902
0.0 42.0 31500 1.0254 0.8902
0.0 43.0 32250 1.0245 0.8869
0.0 44.0 33000 1.0228 0.8885
0.0024 45.0 33750 1.0249 0.8885
0.0 46.0 34500 1.0240 0.8885
0.0 47.0 35250 1.0247 0.8885
0.0 48.0 36000 1.0252 0.8885
0.0 49.0 36750 1.0256 0.8885
0.0 50.0 37500 1.0252 0.8885

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2