hkivancoral's picture
End of training
92521a2
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_rms_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8183333333333334

smids_10x_deit_tiny_rms_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5645
  • Accuracy: 0.8183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8687 1.0 750 0.8350 0.5417
0.7645 2.0 1500 0.8377 0.545
0.8147 3.0 2250 0.8321 0.5633
0.707 4.0 3000 0.8069 0.5617
0.7456 5.0 3750 0.7498 0.66
0.6732 6.0 4500 0.6947 0.7067
0.7173 7.0 5250 0.6562 0.7233
0.6807 8.0 6000 0.6396 0.735
0.5542 9.0 6750 0.6404 0.725
0.5945 10.0 7500 0.6253 0.715
0.5981 11.0 8250 0.6007 0.7333
0.6124 12.0 9000 0.5926 0.7467
0.5651 13.0 9750 0.6373 0.725
0.5876 14.0 10500 0.6106 0.735
0.595 15.0 11250 0.5814 0.7417
0.6259 16.0 12000 0.6014 0.755
0.5932 17.0 12750 0.6177 0.7433
0.5894 18.0 13500 0.7384 0.68
0.605 19.0 14250 0.6249 0.715
0.5663 20.0 15000 0.6124 0.7367
0.5134 21.0 15750 0.5785 0.7433
0.6186 22.0 16500 0.5747 0.7533
0.5238 23.0 17250 0.5818 0.76
0.5431 24.0 18000 0.5901 0.73
0.5802 25.0 18750 0.5751 0.7583
0.532 26.0 19500 0.6079 0.745
0.4391 27.0 20250 0.5654 0.7683
0.5546 28.0 21000 0.5837 0.7717
0.5308 29.0 21750 0.5546 0.76
0.5138 30.0 22500 0.5584 0.7633
0.4508 31.0 23250 0.5616 0.78
0.4928 32.0 24000 0.5495 0.7683
0.5015 33.0 24750 0.5514 0.7717
0.4951 34.0 25500 0.5352 0.7683
0.47 35.0 26250 0.5246 0.7767
0.4942 36.0 27000 0.5348 0.7833
0.4733 37.0 27750 0.5546 0.7833
0.4787 38.0 28500 0.5356 0.7883
0.4477 39.0 29250 0.5284 0.795
0.5359 40.0 30000 0.5502 0.8
0.4568 41.0 30750 0.5425 0.7883
0.4376 42.0 31500 0.5402 0.79
0.4262 43.0 32250 0.5808 0.7617
0.4405 44.0 33000 0.5553 0.7983
0.3884 45.0 33750 0.5497 0.7783
0.37 46.0 34500 0.5855 0.8067
0.413 47.0 35250 0.5591 0.815
0.3776 48.0 36000 0.5614 0.8067
0.3505 49.0 36750 0.5713 0.805
0.3537 50.0 37500 0.5645 0.8183

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2