hkivancoral's picture
End of training
00d5e66
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_sgd_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5074875207986689

smids_10x_deit_tiny_sgd_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9487
  • Accuracy: 0.5075

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3101 1.0 750 1.2862 0.3394
1.2651 2.0 1500 1.2316 0.3494
1.2534 3.0 2250 1.1915 0.3461
1.2051 4.0 3000 1.1627 0.3627
1.1704 5.0 3750 1.1422 0.3644
1.1559 6.0 4500 1.1266 0.3727
1.1314 7.0 5250 1.1140 0.3827
1.0917 8.0 6000 1.1032 0.3844
1.0985 9.0 6750 1.0936 0.4193
1.0734 10.0 7500 1.0847 0.4243
1.0397 11.0 8250 1.0764 0.4293
1.0584 12.0 9000 1.0685 0.4409
1.0692 13.0 9750 1.0611 0.4426
1.0127 14.0 10500 1.0540 0.4542
1.0605 15.0 11250 1.0471 0.4542
1.0197 16.0 12000 1.0406 0.4626
1.0472 17.0 12750 1.0344 0.4659
0.9868 18.0 13500 1.0285 0.4709
1.0498 19.0 14250 1.0228 0.4725
0.9916 20.0 15000 1.0174 0.4742
1.0032 21.0 15750 1.0122 0.4792
1.0262 22.0 16500 1.0073 0.4792
0.9732 23.0 17250 1.0026 0.4792
0.9627 24.0 18000 0.9981 0.4875
0.9933 25.0 18750 0.9939 0.4892
0.9645 26.0 19500 0.9898 0.4942
0.9413 27.0 20250 0.9860 0.4942
0.9502 28.0 21000 0.9824 0.4925
0.9622 29.0 21750 0.9790 0.4958
0.9399 30.0 22500 0.9758 0.4975
0.9259 31.0 23250 0.9728 0.4992
0.9425 32.0 24000 0.9700 0.5008
0.9657 33.0 24750 0.9673 0.5042
0.9537 34.0 25500 0.9649 0.5058
0.9361 35.0 26250 0.9627 0.5075
0.934 36.0 27000 0.9606 0.5092
0.927 37.0 27750 0.9587 0.5092
0.9435 38.0 28500 0.9570 0.5092
0.9139 39.0 29250 0.9555 0.5092
0.9394 40.0 30000 0.9541 0.5075
0.9635 41.0 30750 0.9529 0.5075
0.9447 42.0 31500 0.9519 0.5075
0.9124 43.0 32250 0.9510 0.5075
0.9404 44.0 33000 0.9503 0.5075
0.9374 45.0 33750 0.9497 0.5075
0.9103 46.0 34500 0.9493 0.5075
0.9609 47.0 35250 0.9490 0.5075
0.9309 48.0 36000 0.9488 0.5075
0.9307 49.0 36750 0.9487 0.5075
0.9119 50.0 37500 0.9487 0.5075

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2