hkivancoral's picture
End of training
6b3954e
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_sgd_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.895

smids_10x_deit_tiny_sgd_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2982
  • Accuracy: 0.895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5867 1.0 750 0.5827 0.7783
0.3913 2.0 1500 0.4291 0.83
0.3437 3.0 2250 0.3734 0.86
0.3224 4.0 3000 0.3340 0.8633
0.3802 5.0 3750 0.3192 0.875
0.3066 6.0 4500 0.3104 0.88
0.2589 7.0 5250 0.2967 0.8867
0.2794 8.0 6000 0.2987 0.8867
0.1833 9.0 6750 0.2867 0.8933
0.2023 10.0 7500 0.2817 0.9
0.2616 11.0 8250 0.2809 0.8883
0.2286 12.0 9000 0.2812 0.8983
0.191 13.0 9750 0.2821 0.895
0.2573 14.0 10500 0.2824 0.895
0.233 15.0 11250 0.2788 0.9033
0.227 16.0 12000 0.2755 0.9133
0.2065 17.0 12750 0.2819 0.8933
0.1957 18.0 13500 0.2734 0.9033
0.1915 19.0 14250 0.2738 0.9017
0.1774 20.0 15000 0.2840 0.8967
0.1639 21.0 15750 0.2800 0.9
0.18 22.0 16500 0.2722 0.9033
0.1754 23.0 17250 0.2797 0.8983
0.1721 24.0 18000 0.2818 0.8967
0.2322 25.0 18750 0.2867 0.8933
0.1833 26.0 19500 0.2854 0.8933
0.0838 27.0 20250 0.2833 0.9083
0.1291 28.0 21000 0.2872 0.8883
0.1475 29.0 21750 0.2853 0.8933
0.1339 30.0 22500 0.2879 0.8917
0.0869 31.0 23250 0.2884 0.895
0.1341 32.0 24000 0.2859 0.89
0.1322 33.0 24750 0.2895 0.8933
0.1482 34.0 25500 0.2910 0.8933
0.1123 35.0 26250 0.2921 0.8933
0.1145 36.0 27000 0.2928 0.8933
0.1372 37.0 27750 0.2965 0.8917
0.1907 38.0 28500 0.2941 0.8917
0.1101 39.0 29250 0.2932 0.89
0.1502 40.0 30000 0.2921 0.895
0.1006 41.0 30750 0.2941 0.8983
0.1237 42.0 31500 0.2961 0.8967
0.0943 43.0 32250 0.2963 0.895
0.1038 44.0 33000 0.2980 0.8983
0.1286 45.0 33750 0.2956 0.8917
0.0851 46.0 34500 0.2954 0.8917
0.1551 47.0 35250 0.2984 0.8917
0.0707 48.0 36000 0.2985 0.8967
0.143 49.0 36750 0.2982 0.8967
0.1125 50.0 37500 0.2982 0.895

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2