hkivancoral's picture
End of training
691a2c8
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.88

smids_10x_deit_tiny_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2805
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5873 1.0 750 0.5427 0.8017
0.4134 2.0 1500 0.4078 0.8383
0.4003 3.0 2250 0.3567 0.8583
0.322 4.0 3000 0.3309 0.8733
0.3592 5.0 3750 0.3090 0.8767
0.2384 6.0 4500 0.3021 0.8717
0.2287 7.0 5250 0.2872 0.8833
0.2763 8.0 6000 0.2770 0.8883
0.301 9.0 6750 0.2801 0.89
0.2498 10.0 7500 0.2717 0.8933
0.2639 11.0 8250 0.2693 0.8967
0.2576 12.0 9000 0.2726 0.8967
0.2998 13.0 9750 0.2655 0.905
0.2222 14.0 10500 0.2676 0.8933
0.2757 15.0 11250 0.2607 0.8933
0.1644 16.0 12000 0.2662 0.91
0.2069 17.0 12750 0.2656 0.9033
0.2175 18.0 13500 0.2618 0.9067
0.2174 19.0 14250 0.2668 0.9
0.1626 20.0 15000 0.2708 0.8983
0.1772 21.0 15750 0.2632 0.9017
0.1739 22.0 16500 0.2644 0.9017
0.2129 23.0 17250 0.2644 0.8983
0.1768 24.0 18000 0.2642 0.8983
0.1436 25.0 18750 0.2692 0.8933
0.1864 26.0 19500 0.2647 0.8983
0.13 27.0 20250 0.2627 0.8967
0.1786 28.0 21000 0.2674 0.8967
0.1885 29.0 21750 0.2653 0.895
0.1896 30.0 22500 0.2757 0.8867
0.1887 31.0 23250 0.2629 0.8983
0.1377 32.0 24000 0.2703 0.89
0.1805 33.0 24750 0.2693 0.8917
0.1524 34.0 25500 0.2706 0.89
0.1113 35.0 26250 0.2737 0.8883
0.153 36.0 27000 0.2742 0.8867
0.1281 37.0 27750 0.2787 0.8817
0.112 38.0 28500 0.2764 0.885
0.1149 39.0 29250 0.2767 0.885
0.136 40.0 30000 0.2752 0.8833
0.1297 41.0 30750 0.2749 0.8867
0.1614 42.0 31500 0.2776 0.8833
0.1176 43.0 32250 0.2769 0.8817
0.1355 44.0 33000 0.2814 0.8817
0.1418 45.0 33750 0.2806 0.8833
0.1165 46.0 34500 0.2801 0.8817
0.1556 47.0 35250 0.2815 0.88
0.1322 48.0 36000 0.2803 0.8817
0.1369 49.0 36750 0.2803 0.8833
0.1026 50.0 37500 0.2805 0.88

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2