hkivancoral's picture
End of training
54fc323
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8514190317195326

smids_1x_deit_tiny_adamax_00001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7515
  • Accuracy: 0.8514

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6291 1.0 76 0.6157 0.7212
0.4871 2.0 152 0.4955 0.7663
0.3563 3.0 228 0.4334 0.8147
0.3532 4.0 304 0.4038 0.8264
0.2556 5.0 380 0.3826 0.8364
0.1832 6.0 456 0.3763 0.8314
0.188 7.0 532 0.3632 0.8364
0.176 8.0 608 0.3509 0.8531
0.1753 9.0 684 0.3927 0.8464
0.094 10.0 760 0.3701 0.8614
0.1113 11.0 836 0.3673 0.8598
0.0773 12.0 912 0.3708 0.8531
0.0733 13.0 988 0.3810 0.8464
0.0524 14.0 1064 0.3916 0.8648
0.0392 15.0 1140 0.4052 0.8648
0.0271 16.0 1216 0.4245 0.8614
0.0255 17.0 1292 0.4381 0.8514
0.0233 18.0 1368 0.4614 0.8698
0.0233 19.0 1444 0.4762 0.8614
0.0102 20.0 1520 0.4954 0.8664
0.0235 21.0 1596 0.5367 0.8564
0.0283 22.0 1672 0.5394 0.8681
0.0037 23.0 1748 0.5607 0.8598
0.0016 24.0 1824 0.5901 0.8564
0.0188 25.0 1900 0.5950 0.8564
0.0156 26.0 1976 0.6264 0.8531
0.0197 27.0 2052 0.6288 0.8598
0.009 28.0 2128 0.6474 0.8531
0.025 29.0 2204 0.6597 0.8564
0.0005 30.0 2280 0.6571 0.8548
0.0131 31.0 2356 0.6711 0.8531
0.0183 32.0 2432 0.6793 0.8581
0.0003 33.0 2508 0.6998 0.8514
0.0004 34.0 2584 0.6868 0.8564
0.0226 35.0 2660 0.7047 0.8564
0.0145 36.0 2736 0.7054 0.8548
0.0171 37.0 2812 0.7259 0.8464
0.0011 38.0 2888 0.7392 0.8481
0.0066 39.0 2964 0.7347 0.8481
0.0002 40.0 3040 0.7257 0.8564
0.0087 41.0 3116 0.7270 0.8548
0.0004 42.0 3192 0.7348 0.8631
0.0075 43.0 3268 0.7382 0.8564
0.0002 44.0 3344 0.7585 0.8447
0.0002 45.0 3420 0.7418 0.8531
0.0002 46.0 3496 0.7509 0.8497
0.0002 47.0 3572 0.7508 0.8514
0.0054 48.0 3648 0.7479 0.8514
0.0002 49.0 3724 0.7520 0.8514
0.0002 50.0 3800 0.7515 0.8514

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0