hkivancoral's picture
End of training
0bc0be6
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_rms_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9033333333333333

smids_3x_deit_tiny_rms_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9705
  • Accuracy: 0.9033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3413 1.0 225 0.2808 0.8933
0.2287 2.0 450 0.2742 0.9
0.1591 3.0 675 0.3006 0.89
0.0862 4.0 900 0.3381 0.8883
0.087 5.0 1125 0.4066 0.8783
0.0686 6.0 1350 0.4702 0.885
0.0747 7.0 1575 0.5496 0.8933
0.0256 8.0 1800 0.6539 0.885
0.0458 9.0 2025 0.6793 0.8883
0.0397 10.0 2250 0.7901 0.88
0.0252 11.0 2475 0.7599 0.8967
0.0212 12.0 2700 0.8640 0.89
0.033 13.0 2925 0.8965 0.88
0.0005 14.0 3150 0.8332 0.895
0.0068 15.0 3375 0.9483 0.8717
0.0008 16.0 3600 1.0157 0.8783
0.0016 17.0 3825 0.8948 0.8867
0.0002 18.0 4050 0.8418 0.895
0.0 19.0 4275 0.8994 0.8983
0.0044 20.0 4500 0.8798 0.9083
0.0 21.0 4725 1.0795 0.8717
0.0009 22.0 4950 1.0744 0.885
0.0066 23.0 5175 0.9462 0.8883
0.0 24.0 5400 0.8715 0.9017
0.0088 25.0 5625 0.9553 0.8983
0.0 26.0 5850 0.9300 0.9
0.0271 27.0 6075 0.9362 0.8967
0.0 28.0 6300 0.9453 0.8967
0.0056 29.0 6525 1.0241 0.8917
0.0134 30.0 6750 0.9852 0.9017
0.0062 31.0 6975 0.9946 0.9017
0.0 32.0 7200 1.0433 0.89
0.0 33.0 7425 0.9693 0.8983
0.0 34.0 7650 0.9977 0.8983
0.0 35.0 7875 0.9577 0.9033
0.0 36.0 8100 0.9692 0.8967
0.0 37.0 8325 0.9675 0.8967
0.0 38.0 8550 0.9775 0.9
0.0 39.0 8775 0.9600 0.9
0.0 40.0 9000 0.9503 0.8983
0.0 41.0 9225 0.9634 0.895
0.0 42.0 9450 0.9624 0.9
0.0 43.0 9675 0.9737 0.9
0.0 44.0 9900 0.9743 0.9017
0.0 45.0 10125 0.9706 0.9
0.0 46.0 10350 0.9706 0.9
0.0019 47.0 10575 0.9708 0.9017
0.0 48.0 10800 0.9707 0.9017
0.0 49.0 11025 0.9710 0.9017
0.0 50.0 11250 0.9705 0.9033

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2