hlumin's picture
End of training
0911e71
metadata
license: apache-2.0
base_model: bwilkie/distilhubert-finetuned-gtzan-finetuned-gtzan
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan-finetuned-gtzan-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.88

distilhubert-finetuned-gtzan-finetuned-gtzan-finetuned-gtzan

This model is a fine-tuned version of bwilkie/distilhubert-finetuned-gtzan-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4832
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6233 1.0 56 0.4729 0.88
0.2751 1.99 112 0.4832 0.88

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3