|
--- |
|
library_name: transformers |
|
language: |
|
- yue |
|
license: cc-by-4.0 |
|
tags: |
|
- generated_from_trainer |
|
pipeline_tag: fill-mask |
|
widget: |
|
- text: 香港原本[MASK]一個人煙稀少嘅漁港。 |
|
example_title: 係 |
|
model-index: |
|
- name: bert-large-cantonese |
|
results: [] |
|
--- |
|
|
|
# bert-large-cantonese |
|
|
|
## Description |
|
|
|
This model is tranied from scratch on Cantonese text. It is a BERT model with a large architecture (24-layer, 1024-hidden, 16-heads, 326M parameters). |
|
|
|
The first training stage is to pre-train the model on 128 length sequences with a batch size of 512 for 1 epoch. the second stage is to continued pre-train the model on 512 length sequences with a batch size of 512 for one more epoch. |
|
|
|
## How to use |
|
|
|
You can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
mask_filler = pipeline( |
|
"fill-mask", |
|
model="hon9kon9ize/bert-large-cantonese" |
|
) |
|
|
|
mask_filler("雞蛋六隻,糖呢就兩茶匙,仲有[MASK]橙皮添。") |
|
|
|
; [{'score': 0.08160534501075745, |
|
; 'token': 943, |
|
; 'token_str': '個', |
|
; 'sequence': '雞 蛋 六 隻 , 糖 呢 就 兩 茶 匙 , 仲 有 個 橙 皮 添 。'}, |
|
; {'score': 0.06182105466723442, |
|
; 'token': 1576, |
|
; 'token_str': '啲', |
|
; 'sequence': '雞 蛋 六 隻 , 糖 呢 就 兩 茶 匙 , 仲 有 啲 橙 皮 添 。'}, |
|
; {'score': 0.04600336775183678, |
|
; 'token': 1646, |
|
; 'token_str': '嘅', |
|
; 'sequence': '雞 蛋 六 隻 , 糖 呢 就 兩 茶 匙 , 仲 有 嘅 橙 皮 添 。'}, |
|
; {'score': 0.03743772581219673, |
|
; 'token': 3581, |
|
; 'token_str': '橙', |
|
; 'sequence': '雞 蛋 六 隻 , 糖 呢 就 兩 茶 匙 , 仲 有 橙 橙 皮 添 。'}, |
|
; {'score': 0.031560592353343964, |
|
; 'token': 5148, |
|
; 'token_str': '紅', |
|
; 'sequence': '雞 蛋 六 隻 , 糖 呢 就 兩 茶 匙 , 仲 有 紅 橙 皮 添 。'}] |
|
``` |
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during first training: |
|
|
|
- Batch size: 512 |
|
- Learning rate: 1e-4 |
|
- Learning rate scheduler: linear decay |
|
- 1 Epoch |
|
- Warmup ratio: 0.1 |
|
|
|
Loss plot on [WanDB](https://api.wandb.ai/links/indiejoseph/v3ljlpmp) |
|
|
|
The following hyperparameters were used during second training: |
|
|
|
- Batch size: 512 |
|
- Learning rate: 5e-5 |
|
- Learning rate scheduler: linear decay |
|
- 1 Epoch |
|
- Warmup ratio: 0.1 |
|
|
|
Loss plot on [WanDB](https://api.wandb.ai/links/indiejoseph/vcm3q1ef) |
|
|
|
|