|
--- |
|
base_model: intfloat/e5-large-v2 |
|
datasets: |
|
- sentence-transformers/all-nli |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:10000 |
|
- loss:SoftmaxLoss |
|
widget: |
|
- source_sentence: A man selling donuts to a customer during a world exhibition event |
|
held in the city of Angeles |
|
sentences: |
|
- The man is doing tricks. |
|
- A woman drinks her coffee in a small cafe. |
|
- The building is made of logs. |
|
- source_sentence: A group of people prepare hot air balloons for takeoff. |
|
sentences: |
|
- There are hot air balloons on the ground and air. |
|
- A man is in an art museum. |
|
- People watch another person do a trick. |
|
- source_sentence: Three workers are trimming down trees. |
|
sentences: |
|
- The goalie is sleeping at home. |
|
- There are three workers |
|
- The girl has brown hair. |
|
- source_sentence: Two brown-haired men wearing short-sleeved shirts and shorts are |
|
climbing stairs. |
|
sentences: |
|
- The men have blonde hair. |
|
- A bicyclist passes an esthetically beautiful building on a sunny day |
|
- Two men are dancing. |
|
- source_sentence: A man is sitting in on the side of the street with brass pots. |
|
sentences: |
|
- a younger boy looks at his father |
|
- Children are at the beach. |
|
- a man does not have brass pots |
|
model-index: |
|
- name: SentenceTransformer based on intfloat/e5-large-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.25153764364319275 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.3291921844406249 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.2966881773862295 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.32789142408327193 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.29957914563527244 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.3291921844406249 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.2515376443724997 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.3291921844406249 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.29957914563527244 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.3291921844406249 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test |
|
type: sts-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.27914347241714155 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.30504478158921217 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.3034422953603654 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.30482947439377617 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.30503064655519824 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.30504478158921217 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.2791434684526028 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.30504478158921217 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.30503064655519824 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.30504478158921217 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on intfloat/e5-large-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) <!-- at revision b322e09026e4ea05f42beadf4d661fb4e101d311 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("hongming/e5-large-v2-nli-v1") |
|
# Run inference |
|
sentences = [ |
|
'A man is sitting in on the side of the street with brass pots.', |
|
'a man does not have brass pots', |
|
'Children are at the beach.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.2515 | |
|
| **spearman_cosine** | **0.3292** | |
|
| pearson_manhattan | 0.2967 | |
|
| spearman_manhattan | 0.3279 | |
|
| pearson_euclidean | 0.2996 | |
|
| spearman_euclidean | 0.3292 | |
|
| pearson_dot | 0.2515 | |
|
| spearman_dot | 0.3292 | |
|
| pearson_max | 0.2996 | |
|
| spearman_max | 0.3292 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.2791 | |
|
| **spearman_cosine** | **0.305** | |
|
| pearson_manhattan | 0.3034 | |
|
| spearman_manhattan | 0.3048 | |
|
| pearson_euclidean | 0.305 | |
|
| spearman_euclidean | 0.305 | |
|
| pearson_dot | 0.2791 | |
|
| spearman_dot | 0.305 | |
|
| pearson_max | 0.305 | |
|
| spearman_max | 0.305 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/all-nli |
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 10,000 training samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> | |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> | |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/all-nli |
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> | |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> | |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |
|
|:-----:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:| |
|
| 0 | 0 | - | - | 0.8888 | - | |
|
| 0.16 | 100 | 1.0934 | 1.0656 | 0.5733 | - | |
|
| 0.32 | 200 | 1.0461 | 1.0245 | 0.3466 | - | |
|
| 0.48 | 300 | 1.037 | 1.0152 | 0.3391 | - | |
|
| 0.64 | 400 | 1.0013 | 0.9931 | 0.3333 | - | |
|
| 0.8 | 500 | 1.0014 | 0.9871 | 0.3825 | - | |
|
| 0.96 | 600 | 0.9827 | 0.9705 | 0.3292 | - | |
|
| 1.0 | 625 | - | - | - | 0.3050 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.8.13 |
|
- Sentence Transformers: 3.1.0.dev0 |
|
- Transformers: 4.43.3 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.16.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers and SoftmaxLoss |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |