ner_roberta / README.md
hts98's picture
update model card README.md
12e2bfe
metadata
license: mit
base_model: FacebookAI/roberta-base
tags:
  - generated_from_trainer
datasets:
  - hts98/UIT
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_roberta
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: hts98/UIT
          type: hts98/UIT
        metrics:
          - name: Precision
            type: precision
            value: 0.6042249936370577
          - name: Recall
            type: recall
            value: 0.6798396334478809
          - name: F1
            type: f1
            value: 0.6398059560706104
          - name: Accuracy
            type: accuracy
            value: 0.8046732017950711

ner_roberta

This model is a fine-tuned version of FacebookAI/roberta-base on the hts98/UIT dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7625
  • Precision: 0.6042
  • Recall: 0.6798
  • F1: 0.6398
  • Accuracy: 0.8047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 120.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 122 1.1792 0.2153 0.3176 0.2566 0.6467
No log 2.0 244 0.9056 0.3515 0.4828 0.4069 0.7298
No log 3.0 366 0.8212 0.4012 0.5341 0.4582 0.7447
No log 4.0 488 0.7602 0.4275 0.5653 0.4868 0.7638
1.0934 5.0 610 0.7661 0.4252 0.5873 0.4933 0.7646
1.0934 6.0 732 0.7474 0.4789 0.6080 0.5358 0.7731
1.0934 7.0 854 0.7387 0.4920 0.5979 0.5398 0.7785
1.0934 8.0 976 0.7482 0.4917 0.6168 0.5472 0.7814
0.5404 9.0 1098 0.7774 0.4963 0.6266 0.5539 0.7782
0.5404 10.0 1220 0.7820 0.5074 0.6246 0.5599 0.7802
0.5404 11.0 1342 0.7770 0.5092 0.6363 0.5657 0.7817
0.5404 12.0 1464 0.8045 0.5340 0.6303 0.5781 0.7849
0.3509 13.0 1586 0.8088 0.5344 0.6478 0.5856 0.7871
0.3509 14.0 1708 0.8470 0.5049 0.6432 0.5657 0.7768
0.3509 15.0 1830 0.8358 0.5298 0.6415 0.5803 0.7846
0.3509 16.0 1952 0.8826 0.5216 0.6369 0.5735 0.7889
0.2458 17.0 2074 0.8950 0.5477 0.6400 0.5903 0.7904
0.2458 18.0 2196 0.8846 0.5212 0.6506 0.5788 0.7900
0.2458 19.0 2318 0.8888 0.5335 0.6455 0.5842 0.7904
0.2458 20.0 2440 0.8934 0.5345 0.6346 0.5803 0.7915
0.1765 21.0 2562 0.9482 0.5459 0.6449 0.5913 0.7933
0.1765 22.0 2684 0.9499 0.5462 0.6481 0.5928 0.7959
0.1765 23.0 2806 0.9826 0.5495 0.6369 0.5900 0.7869
0.1765 24.0 2928 0.9815 0.5714 0.6475 0.6071 0.7973
0.1273 25.0 3050 1.0080 0.5618 0.6498 0.6026 0.7971
0.1273 26.0 3172 1.0463 0.5472 0.6544 0.5960 0.7940
0.1273 27.0 3294 1.0349 0.5574 0.6475 0.5991 0.7966
0.1273 28.0 3416 1.0559 0.5496 0.6523 0.5966 0.7898
0.0951 29.0 3538 1.0901 0.5433 0.6523 0.5928 0.7918
0.0951 30.0 3660 1.1400 0.5297 0.6532 0.5850 0.7841
0.0951 31.0 3782 1.1601 0.5624 0.6337 0.5959 0.7916
0.0951 32.0 3904 1.1359 0.5498 0.6532 0.5970 0.7883
0.0717 33.0 4026 1.1269 0.5625 0.6564 0.6058 0.7965
0.0717 34.0 4148 1.1758 0.5679 0.6443 0.6037 0.7967
0.0717 35.0 4270 1.1870 0.5493 0.6506 0.5957 0.7898
0.0717 36.0 4392 1.1296 0.5509 0.6558 0.5988 0.7928
0.0552 37.0 4514 1.2164 0.5415 0.6564 0.5934 0.7903
0.0552 38.0 4636 1.2047 0.5516 0.6581 0.6002 0.7943
0.0552 39.0 4758 1.2364 0.5641 0.6604 0.6084 0.7949
0.0552 40.0 4880 1.2481 0.5573 0.6598 0.6042 0.7945
0.0432 41.0 5002 1.2768 0.5684 0.6452 0.6043 0.7926
0.0432 42.0 5124 1.2605 0.5639 0.6595 0.6080 0.7958
0.0432 43.0 5246 1.2495 0.5710 0.6607 0.6126 0.7975
0.0432 44.0 5368 1.2718 0.5762 0.6486 0.6103 0.7955
0.0432 45.0 5490 1.2998 0.5725 0.6512 0.6093 0.8003
0.0331 46.0 5612 1.3469 0.5620 0.6455 0.6008 0.7946
0.0331 47.0 5734 1.3357 0.5722 0.6604 0.6131 0.8010
0.0331 48.0 5856 1.3576 0.5583 0.6578 0.6040 0.7936
0.0331 49.0 5978 1.3397 0.5766 0.6584 0.6148 0.7985
0.0265 50.0 6100 1.3641 0.5671 0.6549 0.6078 0.7961
0.0265 51.0 6222 1.3727 0.5637 0.6546 0.6058 0.7938
0.0265 52.0 6344 1.4025 0.5624 0.6621 0.6082 0.7927
0.0265 53.0 6466 1.3991 0.5672 0.6561 0.6084 0.7916
0.0212 54.0 6588 1.4268 0.5664 0.6655 0.6120 0.7953
0.0212 55.0 6710 1.4377 0.5636 0.6584 0.6073 0.7944
0.0212 56.0 6832 1.4307 0.5689 0.6607 0.6114 0.7953
0.0212 57.0 6954 1.4773 0.5678 0.6472 0.6049 0.7917
0.0171 58.0 7076 1.4626 0.5928 0.6532 0.6215 0.7976
0.0171 59.0 7198 1.4489 0.5726 0.6569 0.6119 0.7991
0.0171 60.0 7320 1.4479 0.5834 0.6592 0.6190 0.8010
0.0171 61.0 7442 1.4649 0.5828 0.6523 0.6156 0.7976
0.0142 62.0 7564 1.5170 0.5726 0.6698 0.6174 0.8006
0.0142 63.0 7686 1.4866 0.5776 0.6661 0.6187 0.7985
0.0142 64.0 7808 1.5446 0.5788 0.6604 0.6169 0.8010
0.0142 65.0 7930 1.5566 0.5687 0.6604 0.6111 0.7935
0.0114 66.0 8052 1.5454 0.5896 0.6632 0.6243 0.7959
0.0114 67.0 8174 1.5341 0.6015 0.6670 0.6325 0.7998
0.0114 68.0 8296 1.5298 0.5864 0.6569 0.6197 0.7963
0.0114 69.0 8418 1.5694 0.5773 0.6638 0.6176 0.7944
0.0101 70.0 8540 1.5914 0.5805 0.6647 0.6198 0.7977
0.0101 71.0 8662 1.5686 0.5728 0.6592 0.6130 0.7957
0.0101 72.0 8784 1.6199 0.5647 0.6695 0.6127 0.7949
0.0101 73.0 8906 1.6344 0.5848 0.6667 0.6230 0.7944
0.0079 74.0 9028 1.5580 0.5915 0.6721 0.6292 0.7970
0.0079 75.0 9150 1.6272 0.6054 0.6655 0.6340 0.8006
0.0079 76.0 9272 1.6267 0.5795 0.6629 0.6184 0.7968
0.0079 77.0 9394 1.6501 0.5758 0.6704 0.6195 0.7959
0.0065 78.0 9516 1.6222 0.5959 0.6690 0.6303 0.7995
0.0065 79.0 9638 1.6543 0.5878 0.6690 0.6258 0.7966
0.0065 80.0 9760 1.6054 0.5922 0.6675 0.6276 0.8009
0.0065 81.0 9882 1.6387 0.5941 0.6690 0.6293 0.8008
0.0053 82.0 10004 1.6453 0.6098 0.6712 0.6390 0.8047
0.0053 83.0 10126 1.6794 0.5803 0.6684 0.6212 0.8005
0.0053 84.0 10248 1.7006 0.5979 0.6690 0.6314 0.7990
0.0053 85.0 10370 1.6820 0.5928 0.6715 0.6297 0.7989
0.0053 86.0 10492 1.6995 0.5920 0.6698 0.6285 0.7983
0.0045 87.0 10614 1.6652 0.5923 0.6624 0.6254 0.8005
0.0045 88.0 10736 1.7196 0.5919 0.6658 0.6267 0.7991
0.0045 89.0 10858 1.6730 0.5953 0.6629 0.6273 0.8054
0.0045 90.0 10980 1.7092 0.5966 0.6747 0.6332 0.8023
0.0037 91.0 11102 1.7260 0.6035 0.6678 0.6340 0.8010
0.0037 92.0 11224 1.7106 0.5998 0.6670 0.6316 0.8030
0.0037 93.0 11346 1.7096 0.6047 0.6747 0.6378 0.8028
0.0037 94.0 11468 1.7220 0.5986 0.6770 0.6354 0.8010
0.0032 95.0 11590 1.7394 0.5966 0.6790 0.6351 0.7994
0.0032 96.0 11712 1.7257 0.6074 0.6744 0.6392 0.8005
0.0032 97.0 11834 1.7008 0.6046 0.6687 0.6350 0.8039
0.0032 98.0 11956 1.7482 0.6029 0.6718 0.6355 0.8032
0.0028 99.0 12078 1.7570 0.5988 0.6690 0.6319 0.8030
0.0028 100.0 12200 1.7332 0.5980 0.6735 0.6335 0.8026
0.0028 101.0 12322 1.7491 0.5902 0.6710 0.6280 0.8011
0.0028 102.0 12444 1.7542 0.6003 0.6735 0.6348 0.8033
0.0021 103.0 12566 1.7371 0.5956 0.6698 0.6305 0.8040
0.0021 104.0 12688 1.7719 0.5914 0.6678 0.6273 0.8007
0.0021 105.0 12810 1.7473 0.5982 0.6667 0.6306 0.8045
0.0021 106.0 12932 1.7518 0.6002 0.6767 0.6362 0.8040
0.0019 107.0 13054 1.7628 0.6010 0.6750 0.6358 0.8048
0.0019 108.0 13176 1.8080 0.5970 0.6770 0.6345 0.7965
0.0019 109.0 13298 1.8028 0.5961 0.6767 0.6339 0.7986
0.0019 110.0 13420 1.7820 0.5996 0.6733 0.6343 0.8030
0.0015 111.0 13542 1.7890 0.6024 0.6764 0.6373 0.8030
0.0015 112.0 13664 1.7686 0.6071 0.6761 0.6398 0.8040
0.0015 113.0 13786 1.7625 0.6042 0.6798 0.6398 0.8047
0.0015 114.0 13908 1.7637 0.6054 0.6735 0.6377 0.8039
0.0013 115.0 14030 1.7680 0.6041 0.6770 0.6385 0.8038
0.0013 116.0 14152 1.7831 0.6001 0.6781 0.6367 0.8029
0.0013 117.0 14274 1.7854 0.5994 0.6758 0.6353 0.8021
0.0013 118.0 14396 1.7762 0.6011 0.6741 0.6355 0.8034
0.0012 119.0 14518 1.7778 0.6011 0.6750 0.6359 0.8028
0.0012 120.0 14640 1.7774 0.6016 0.6747 0.6361 0.8029

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.13.3