SentenceTransformer based on sentence-transformers/use-cmlm-multilingual
This is a sentence-transformers model finetuned from sentence-transformers/use-cmlm-multilingual. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/use-cmlm-multilingual
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"флексов: ['Да'], Пол: ['Женский'], Коллекция (год): ['2022.0'], Общая ширина, мм: ['142'], Цвет товара: ['бежевый'], Ширина линзы, мм: ['53'], Название цвета: ['BEIGE & CRYSTAL'], Высота линзы, мм: ['52'], Размер заушника, мм: ['148'], Бренд: ['Boccaccio'], Оптическая сила: ['0.00'], Размер моста на переносице, мм: ['20'], Форма лица: ['Квадратная', 'Круглая', 'Овальная', 'Прямоугольная', 'Треугольная'], Покрытие линз: ['Упрочняющее, просветляющее, металлизированное (защита от электромагнитных волн) UV-380, водоотталкивающее и антистатическое'], Расстояние между оптическими центрами: ['62-64'], Форма оправы: ['Круглая'],",
"флексов: ['Да'], Пол: ['Женский'], Коллекция (год): ['2022.0'], Общая ширина, мм: ['142'], Цвет товара: ['бежевый'], Ширина линзы, мм: ['53'], Название цвета: ['BEIGE & CRYSTAL'], Высота линзы, мм: ['52'], Размер заушника, мм: ['148'], Бренд: ['Boccaccio'], Оптическая сила: ['-1.00'], Размер моста на переносице, мм: ['20'], Форма лица: ['Квадратная', 'Круглая', 'Овальная', 'Прямоугольная', 'Треугольная'], Покрытие линз: ['Упрочняющее, просветляющее, металлизированное (защита от электромагнитных волн) UV-380, водоотталкивающее и антистатическое'], Расстояние между оптическими центрами: ['62-64'], Форма оправы: ['Круглая'],",
'Изначально сборка паяется с разъёмом SMA-male, после чего интегрируется (накручивается, конечно) переходник с SMA-female на запрашиваемый. Сборка поставляется вместе с переходником (или даже с двумя, если оба разъема попадают под данную ремарку).<br> О кабеле:<br> Кабель имеет толщину примерно 7,58 миллиметров, сборка создана на кабеле 5D-FB CCA 50 Ом, материал оболочки - PVC. Диаметр центральной жилы - 1.8 мм, диаметр изоляции (не кабеля) - 4.9 мм, материал изоляции - вспененный полиэтилен,',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 200,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 3 tokens
- mean: 155.76 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 153.29 tokens
- max: 256 tokens
- 0: ~55.40%
- 1: ~44.60%
- Samples:
sentence_0 sentence_1 label Удилище с катушкой в комплекте - леска, поплавок, грузило 1: EPG, 2: Спорт и отдых, 3: Аксессуары и принадлежности для рыбалки, 4: Удилище,Количество колец: ['7'], Материал удилища: ['Карбон'], Бренд: ['Нет бренда'], Тип: ['Удилище с катушкой'], Рабочая длина, см: ['370'], Конструкция удилища: ['Телескопическая'], Длина в сложенном виде, см: ['65'], Вершинка удилища: ['Вклеенная монолитная (solid tip)'], Количество секций: ['7'], Длина рукояти, см: ['40'], Вес товара, г: ['460'], Удочка (удилище) - удобная и
Удилище с катушкой в комплекте - леска, поплавок, грузило, 200 см 1: EPG, 2: Спорт и отдых, 3: Аксессуары и принадлежности для рыбалки, 4: Удилище,Количество колец: ['4'], Материал удилища: ['Карбон'], Бренд: ['Нет бренда'], Тип: ['Удилище с катушкой'], Рабочая длина, см: ['200'], Конструкция удилища: ['Телескопическая'], Длина в сложенном виде, см: ['45'], Вершинка удилища: ['Вклеенная монолитная (solid tip)'], Количество секций: ['4'], Длина рукояти, см: ['28'], Вес товара, г: ['270'], Удочка (удилище) -
0
['Мягкая обложка'], Язык издания: ['Русский'], Предмет обучения: ['История'],
Атлас предназначен для углубления знаний учащихся по курсу Новой истории. Картографический материал, включенный в атлас, соответствует Государственному образовательному стандарту.
Атлас может быть использован в комплекте с основными учебниками по Новой истории как на уроках, так и во внеурочной деятельности. Он содержит богатый материал для самостоятельной работы, дает возможность проверить знания школьников и расширить их кругозор.
любителей занимаются приусадебным хозяйством и получают от этого неплохую прибыль.
В этой книге собраны материалы, необходимые современному дачнику. Постройка садового домика, уход за садом и огородом, основы интенсивного животноводства - об этом и о многом другом читайте на страницах издания.
Издание адресовано широкому кругу читателей.0
комод деревянный также на кухне для посуды.
деревянный также на кухне для посуды.
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 40per_device_eval_batch_size
: 40num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 40per_device_eval_batch_size
: 40per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.1 | 500 | 0.0449 |
0.2 | 1000 | 0.0356 |
0.3 | 1500 | 0.0328 |
0.4 | 2000 | 0.0311 |
0.5 | 2500 | 0.0304 |
0.6 | 3000 | 0.0302 |
0.7 | 3500 | 0.0293 |
0.8 | 4000 | 0.029 |
0.9 | 4500 | 0.0292 |
1.0 | 5000 | 0.0287 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 2
Model tree for huggingshogun/muse-repo
Base model
sentence-transformers/use-cmlm-multilingual