|
--- |
|
tags: |
|
- flair |
|
- entity-mention-linker |
|
--- |
|
|
|
## sapbert-ncbi-taxonomy-no-ab3p |
|
|
|
Biomedical Entity Mention Linking for UMLS. |
|
We use this model for species since NCBI Taxonomy is contained in UMLS: |
|
|
|
- Model: [cambridgeltl/SapBERT-from-PubMedBERT-fulltext](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext) |
|
- Dictionary: [NCBI Taxonomy](https://www.ncbi.nlm.nih.gov/taxonomy) (See [FTP](https://ftp.ncbi.nih.gov/pub/taxonomy/new_taxdump/)) |
|
|
|
NOTE: This model variant does not perform abbreviation resolution via [A3bP](https://github.com/ncbi-nlp/Ab3P) |
|
|
|
### Demo: How to use in Flair |
|
|
|
Requires: |
|
|
|
- **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) |
|
|
|
```python |
|
from flair.data import Sentence |
|
from flair.models import Classifier, EntityMentionLinker |
|
from flair.tokenization import SciSpacyTokenizer |
|
|
|
sentence = Sentence( |
|
"The mutation in the ABCD1 gene causes X-linked adrenoleukodystrophy, " |
|
"a neurodegenerative disease, which is exacerbated by exposure to high " |
|
"levels of mercury in dolphin populations.", |
|
use_tokenizer=SciSpacyTokenizer() |
|
) |
|
|
|
# load hunflair to detect the entity mentions we want to link. |
|
tagger = Classifier.load("hunflair-species") |
|
tagger.predict(sentence) |
|
|
|
# load the linker and dictionary |
|
linker = EntityMentionLinker.load("species-linker-no-abbres") |
|
linker.predict(sentence) |
|
|
|
# print the results for each entity mention: |
|
for span in sentence.get_spans(tagger.label_type): |
|
for link in span.get_labels(linker.label_type): |
|
print(f"{span.text} -> {link.value}") |
|
``` |
|
|
|
As an alternative to downloading the already precomputed model (much storage). You can also build the model |
|
and compute the embeddings for the dataset using: |
|
|
|
```python |
|
from flair.models.entity_mention_linking import BioSynEntityPreprocessor |
|
linker = EntityMentionLinker.build("cambridgeltl/SapBERT-from-PubMedBERT-fulltext", dictionary_name_or_path="ncbi-taxonomy", entity_type="species", preprocessor=BioSynEntityPreprocessor(), hybrid_search=False) |
|
``` |
|
|
|
This will reduce the download requirements, at the cost of computation. Note `hybrid_search=False` as SapBERT unlike BioSyn is trained only for dense retrieval. |
|
|