bert-24.1
This model is a fine-tuned version of deepset/bert-base-cased-squad2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 11.5138
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.3192 | 0.09 | 5 | 12.3266 |
11.4418 | 0.18 | 10 | 12.2766 |
11.029 | 0.27 | 15 | 12.2278 |
11.1589 | 0.36 | 20 | 12.1813 |
11.1385 | 0.45 | 25 | 12.1361 |
11.1645 | 0.55 | 30 | 12.0921 |
10.4417 | 0.64 | 35 | 12.0500 |
11.0789 | 0.73 | 40 | 12.0100 |
10.6311 | 0.82 | 45 | 11.9712 |
10.5261 | 0.91 | 50 | 11.9340 |
10.2874 | 1.0 | 55 | 11.8991 |
10.5003 | 1.09 | 60 | 11.8652 |
10.6206 | 1.18 | 65 | 11.8330 |
10.8413 | 1.27 | 70 | 11.8025 |
10.3731 | 1.36 | 75 | 11.7735 |
10.8143 | 1.45 | 80 | 11.7455 |
10.5414 | 1.55 | 85 | 11.7199 |
10.4919 | 1.64 | 90 | 11.6950 |
10.3187 | 1.73 | 95 | 11.6721 |
10.5598 | 1.82 | 100 | 11.6508 |
10.1028 | 1.91 | 105 | 11.6310 |
10.4634 | 2.0 | 110 | 11.6125 |
10.3986 | 2.09 | 115 | 11.5958 |
10.2164 | 2.18 | 120 | 11.5810 |
10.3932 | 2.27 | 125 | 11.5674 |
10.5229 | 2.36 | 130 | 11.5549 |
10.1181 | 2.45 | 135 | 11.5444 |
10.5176 | 2.55 | 140 | 11.5354 |
10.0784 | 2.64 | 145 | 11.5279 |
10.599 | 2.73 | 150 | 11.5223 |
10.3577 | 2.82 | 155 | 11.5180 |
10.3107 | 2.91 | 160 | 11.5150 |
10.5243 | 3.0 | 165 | 11.5138 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.