|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class PALayer(nn.Module): |
|
def __init__(self, channel): |
|
super(PALayer, self).__init__() |
|
self.pa = nn.Sequential( |
|
nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(channel // 8, 1, 1, padding=0, bias=True), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
y = self.pa(x) |
|
return x * y |
|
|
|
|
|
class CALayer(nn.Module): |
|
def __init__(self, channel): |
|
super(CALayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.ca = nn.Sequential( |
|
nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(channel // 8, channel, 1, padding=0, bias=True), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
y = self.avg_pool(x) |
|
y = self.ca(y) |
|
|
|
return x * y |
|
|
|
|
|
class DoubleConv(nn.Module): |
|
def __init__(self, in_channels, out_channels, norm=False, leaky=True): |
|
super().__init__() |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(out_channels) if norm else nn.Identity(), |
|
nn.LeakyReLU(0.2, inplace=True) if leaky else nn.ReLU(inplace=True), |
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(out_channels) if norm else nn.Identity(), |
|
nn.LeakyReLU(0.2, inplace=True) if leaky else nn.ReLU(inplace=True) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class OutConv(nn.Module): |
|
def __init__(self, in_channels, out_channels, act=True): |
|
super(OutConv, self).__init__() |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), |
|
nn.Sigmoid() if act else nn.Identity() |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class Down(nn.Module): |
|
"""Downscaling with maxpool then double conv""" |
|
|
|
def __init__(self, in_channels, out_channels, norm=True, leaky=True): |
|
super().__init__() |
|
self.maxpool_conv = nn.Sequential( |
|
nn.MaxPool2d(2), |
|
DoubleConv(in_channels, out_channels, norm=norm, leaky=leaky) |
|
) |
|
|
|
def forward(self, x): |
|
return self.maxpool_conv(x) |
|
|
|
|
|
class Up(nn.Module): |
|
"""Upscaling then double conv""" |
|
|
|
def __init__(self, in_channels, out_channels, bilinear=True, norm=True, leaky=True): |
|
super().__init__() |
|
|
|
|
|
if bilinear: |
|
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) |
|
self.conv = DoubleConv(in_channels, out_channels, norm=norm, leaky=leaky) |
|
else: |
|
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) |
|
self.conv = DoubleConv(in_channels, out_channels, norm=norm, leaky=leaky) |
|
|
|
def forward(self, x1, x2): |
|
x1 = self.up(x1) |
|
|
|
diffY = x2.size()[2] - x1.size()[2] |
|
diffX = x2.size()[3] - x1.size()[3] |
|
|
|
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, |
|
diffY // 2, diffY - diffY // 2]) |
|
|
|
x = torch.cat([x2, x1], dim=1) |
|
return self.conv(x) |
|
|
|
|
|
class AttentiveDown(nn.Module): |
|
def __init__(self, in_channels, out_channels, norm=False, leaky=True): |
|
super().__init__() |
|
self.down = Down(in_channels, out_channels, norm=norm, leaky=leaky) |
|
self.attention = nn.Sequential( |
|
CALayer(out_channels), |
|
PALayer(out_channels) |
|
) |
|
|
|
def forward(self, x): |
|
return self.attention(self.down(x)) |
|
|
|
|
|
class AttentiveUp(nn.Module): |
|
def __init__(self, in_channels, out_channels, bilinear=True, norm=False, leaky=True): |
|
super().__init__() |
|
self.up = Up(in_channels, out_channels, bilinear, norm=norm, leaky=leaky) |
|
self.attention = nn.Sequential( |
|
CALayer(out_channels), |
|
PALayer(out_channels) |
|
) |
|
|
|
def forward(self, x1, x2): |
|
return self.attention(self.up(x1, x2)) |
|
|
|
|
|
class AttentiveDoubleConv(nn.Module): |
|
def __init__(self, in_channels, out_channels, norm=False, leaky=False): |
|
super().__init__() |
|
self.conv = DoubleConv(in_channels, out_channels, norm=norm, leaky=leaky) |
|
self.attention = nn.Sequential( |
|
CALayer(out_channels), |
|
PALayer(out_channels) |
|
) |
|
|
|
def forward(self, x): |
|
return self.attention(self.conv(x)) |
|
|