Edit model card
  • A model for predicting the source of news articles

Usage:

import re
from transformers import pipeline
from html import unescape
from unicodedata import normalize

re_multispace = re.compile(r"\s+")

def normalize_text(text):
    if text == None:
        return None

    text = text.strip()
    text = text.replace("\n", " ")
    text = text.replace("\t", " ")
    text = text.replace("\r", " ")
    text = re_multispace.sub(" ", text)
    text = unescape(text)
    text = normalize("NFKC", text)
    return text


model = pipeline(task="text-classification",
 model=f"hynky/Server", tokenizer="ufal/robeczech-base",
 truncation=True, max_length=512,
 top_k=5
)


def predict(article):
    article = normalize_text(article)
    predictions = model(article)

predict("Dnes v noci bude pršet.")
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train hynky/Server