metadata
language:
- en
license: apache-2.0
tags:
- generated_from_keras_callback
datasets:
- Babelscape/multinerd
metrics:
- seqeval
base_model: distilbert-base-uncased
pipeline_tag: token-classification
widget:
- text: >-
After months of meticulous review and analysis, I am proud to present a
study that explores the deep connections between Epstein-Barr virus (EBV),
Long COVID and Myalgic Encephalomyelitis.
example_title: Example 1
- text: >-
The boy is, of course, Cupid. The image of a cupid riding a lion was a
common theme in classical and Renaissance art, representing the Virgilian
maxim Amor vincit omnia – love conquers all.
example_title: Example 2
- text: Billionaire Charlie Munger, Warren Buffet's right hand man, dies at 99.
example_title: Example 3
model-index:
- name: i-be-snek/distilbert-base-uncased-finetuned-ner-exp_A
results:
- task:
type: token-classification
name: ner
dataset:
name: Babelscape/multinerd
type: Babelscape/multinerd
split: test
metrics:
- type: seqeval
value: 0.9053582270795385
name: precision
- type: seqeval
value: 0.9303178007408852
name: recall
- type: seqeval
value: 0.9176683270188665
name: f1
- type: seqeval
value: 0.9863554498955407
name: accuracy
i-be-snek/distilbert-base-uncased-finetuned-ner-exp_A
This model is a fine-tuned version of distilbert-base-uncased on the English subset of all named entities in Babelscape/multinerd dataset. It achieves the following results on the validation set:
- Train Loss: 0.0163
- Validation Loss: 0.1024
- Train Precision: 0.8763
- Train Recall: 0.8862
- Train F1: 0.8812
- Train Accuracy: 0.9750
- Epoch: 2
Model description
distilbert-base-uncased-finetuned-ner-exp_A is a Named Entity Recognition model finetuned on distilbert-base-uncased. This model is uncased, so it makes no distinction between "sarah" and "Sarah".
Training and evaluation data
This model has been evaluated on the English subset of the test set of Babelscape/multinerd
Evaluation results
metric | value |
---|---|
precision | 0.905358 |
recall | 0.930318 |
f1 | 0.917668 |
accuracy | 0.986355 |
metric/tag | ANIM | BIO | CEL | DIS | EVE | FOOD | INST | LOC | MEDIA | MYTH | ORG | PER | PLANT | TIME | VEHI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
precision | 0.667262 | 0.666667 | 0.508197 | 0.662324 | 0.896277 | 0.637809 | 0.642857 | 0.964137 | 0.931915 | 0.638889 | 0.941176 | 0.99033 | 0.558043 | 0.756579 | 0.735294 |
recall | 0.698878 | 0.75 | 0.756098 | 0.803689 | 0.957386 | 0.637809 | 0.75 | 0.963656 | 0.956332 | 0.71875 | 0.962224 | 0.992023 | 0.752796 | 0.795848 | 0.78125 |
f1 | 0.682704 | 0.705882 | 0.607843 | 0.72619 | 0.925824 | 0.637809 | 0.692308 | 0.963897 | 0.943966 | 0.676471 | 0.951584 | 0.991176 | 0.640952 | 0.775717 | 0.757576 |
number | 3208 | 16 | 82 | 1518 | 704 | 1132 | 24 | 24048 | 916 | 64 | 6618 | 10530 | 1788 | 578 | 64 |
Training procedure
All scripts for training can be found in this GitHub repository.
The model had early stopped watching its val_loss
.
Training hyperparameters
The following hyperparameters were used during training:
- optimizer:
{ "name": "AdamWeightDecay", "learning_rate": 2e-05, "decay": 0.0, "beta_1": 0.9, "beta_2": 0.999, "epsilon": 1e-07, "amsgrad": False, "weight_decay_rate": 0.0, }
- training_precision:
float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.0709 | 0.0710 | 0.8563 | 0.8875 | 0.8716 | 0.9735 | 0 |
0.0295 | 0.0851 | 0.8743 | 0.8835 | 0.8789 | 0.9748 | 1 |
0.0163 | 0.1024 | 0.8763 | 0.8862 | 0.8812 | 0.9750 | 2 |
Epoch 0
Named Entity | precision | recall | f1 |
---|---|---|---|
ANIM | 0.699150 | 0.620124 | 0.657270 |
BIO | 0.480000 | 0.782609 | 0.595041 |
CEL | 0.815385 | 0.876033 | 0.844622 |
DIS | 0.628939 | 0.806709 | 0.706818 |
EVE | 0.898876 | 0.924855 | 0.911681 |
FOOD | 0.624774 | 0.602266 | 0.613314 |
INST | 0.467391 | 0.741379 | 0.573333 |
LOC | 0.967354 | 0.969634 | 0.968493 |
MEDIA | 0.911227 | 0.939856 | 0.925320 |
MYTH | 0.941860 | 0.771429 | 0.848168 |
ORG | 0.924471 | 0.937629 | 0.931003 |
PER | 0.988699 | 0.990918 | 0.989807 |
PLANT | 0.622521 | 0.781333 | 0.692944 |
TIME | 0.743902 | 0.738499 | 0.741191 |
VEHI | 0.785714 | 0.791367 | 0.788530 |
Epoch 1
Named Entity | precision | recall | f1 |
---|---|---|---|
ANIM | 0.701040 | 0.747340 | 0.723450 |
BIO | 0.422222 | 0.826087 | 0.558824 |
CEL | 0.729167 | 0.867769 | 0.792453 |
DIS | 0.731099 | 0.749794 | 0.740328 |
EVE | 0.864865 | 0.924855 | 0.893855 |
FOOD | 0.652865 | 0.572632 | 0.610122 |
INST | 0.871795 | 0.586207 | 0.701031 |
LOC | 0.968255 | 0.966143 | 0.967198 |
MEDIA | 0.946346 | 0.918312 | 0.932118 |
MYTH | 0.914894 | 0.819048 | 0.864322 |
ORG | 0.906064 | 0.943582 | 0.924442 |
PER | 0.990389 | 0.988367 | 0.989377 |
PLANT | 0.625889 | 0.743556 | 0.679667 |
TIME | 0.755981 | 0.765133 | 0.760529 |
VEHI | 0.737500 | 0.848921 | 0.789298 |
Epoch 2
Named Entity | precision | recall | f1 |
---|---|---|---|
ANIM | 0.730443 | 0.687057 | 0.708086 |
BIO | 0.330882 | 0.978261 | 0.494505 |
CEL | 0.798561 | 0.917355 | 0.853846 |
DIS | 0.738108 | 0.750894 | 0.744446 |
EVE | 0.904899 | 0.907514 | 0.906205 |
FOOD | 0.628664 | 0.623184 | 0.625912 |
INST | 0.533333 | 0.551724 | 0.542373 |
LOC | 0.967915 | 0.973997 | 0.970946 |
MEDIA | 0.949627 | 0.913824 | 0.931382 |
MYTH | 0.910000 | 0.866667 | 0.887805 |
ORG | 0.924920 | 0.934136 | 0.929505 |
PER | 0.989506 | 0.991020 | 0.990263 |
PLANT | 0.637648 | 0.742222 | 0.685972 |
TIME | 0.766355 | 0.794189 | 0.780024 |
VEHI | 0.818182 | 0.647482 | 0.722892 |
Framework versions
- Transformers 4.35.2
- TensorFlow 2.14.0
- Datasets 2.15.0
- Tokenizers 0.15.0