|
--- |
|
language: |
|
- ar |
|
license: other |
|
library_name: span-marker |
|
tags: |
|
- span-marker |
|
- token-classification |
|
- ner |
|
- named-entity-recognition |
|
- generated_from_span_marker_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: جامعة بيزا (إيطاليا). |
|
- text: تعلم في جامعة أوكسفورد، جامعة برنستون، جامعة كولومبيا. |
|
- text: موطنها بلاد الشام تركيا. |
|
- text: عادل إمام - نور الشريف |
|
- text: فوكسي و بورتشا ضد مونكي دي لوفي و نامي |
|
pipeline_tag: token-classification |
|
base_model: xlm-roberta-base |
|
model-index: |
|
- name: SpanMarker with xlm-roberta-base on wikiann |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Named Entity Recognition |
|
dataset: |
|
name: Unknown |
|
type: wikiann |
|
split: eval |
|
metrics: |
|
- type: f1 |
|
value: 0.8965362325351544 |
|
name: F1 |
|
- type: precision |
|
value: 0.9077510917030568 |
|
name: Precision |
|
- type: recall |
|
value: 0.8855951007366646 |
|
name: Recall |
|
--- |
|
|
|
# SpanMarker(Arabic) with xlm-roberta-base on wikiann |
|
|
|
|
|
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [wikiann](https://huggingface.co/datasets/wikiann) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SpanMarker |
|
- **Encoder:** [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Maximum Entity Length:** 30 words |
|
- **Training Dataset:** [wikiann](https://huggingface.co/datasets/wikiann) |
|
- **Languages:** ar |
|
- **License:** other |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) |
|
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------| |
|
| LOC | "شور بلاغ ( مقاطعة غرمي )", "دهنو ( تایباد )", "أقاليم ما وراء البحار" | |
|
| ORG | "الحزب الاشتراكي", "نادي باسوش دي فيريرا", "دايو ( شركة )" | |
|
| PER | "فرنسوا ميتيران،", "ديفيد نالبانديان", "حكم ( كرة قدم )" | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
```python |
|
from span_marker import SpanMarkerModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("span_marker_model_id") |
|
# Run inference |
|
entities = model.predict("موطنها بلاد الشام تركيا.") |
|
``` |
|
|
|
### Downstream Use |
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
```python |
|
from span_marker import SpanMarkerModel, Trainer |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("span_marker_model_id") |
|
|
|
# Specify a Dataset with "tokens" and "ner_tag" columns |
|
dataset = load_dataset("conll2003") # For example CoNLL2003 |
|
|
|
# Initialize a Trainer using the pretrained model & dataset |
|
trainer = Trainer( |
|
model=model, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["validation"], |
|
) |
|
trainer.train() |
|
trainer.save_model("span_marker_model_id-finetuned") |
|
``` |
|
</details> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:----------------------|:----|:-------|:----| |
|
| Sentence length | 3 | 6.4592 | 63 | |
|
| Entities per sentence | 1 | 1.1251 | 13 | |
|
|
|
### Training Hyperparameters |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training Results |
|
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |
|
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| |
|
| 0.1989 | 500 | 0.1735 | 0.2667 | 0.0011 | 0.0021 | 0.4103 | |
|
| 0.3979 | 1000 | 0.0808 | 0.7283 | 0.5314 | 0.6145 | 0.7716 | |
|
| 0.5968 | 1500 | 0.0595 | 0.7876 | 0.6872 | 0.7340 | 0.8546 | |
|
| 0.7957 | 2000 | 0.0532 | 0.8148 | 0.7600 | 0.7865 | 0.8823 | |
|
| 0.9946 | 2500 | 0.0478 | 0.8485 | 0.8028 | 0.8250 | 0.9085 | |
|
| 1.1936 | 3000 | 0.0419 | 0.8586 | 0.8084 | 0.8327 | 0.9101 | |
|
| 1.3925 | 3500 | 0.0390 | 0.8628 | 0.8367 | 0.8495 | 0.9237 | |
|
| 1.5914 | 4000 | 0.0456 | 0.8559 | 0.8299 | 0.8427 | 0.9231 | |
|
| 1.7903 | 4500 | 0.0375 | 0.8682 | 0.8469 | 0.8574 | 0.9282 | |
|
| 1.9893 | 5000 | 0.0323 | 0.8821 | 0.8635 | 0.8727 | 0.9348 | |
|
| 2.1882 | 5500 | 0.0346 | 0.8781 | 0.8632 | 0.8706 | 0.9346 | |
|
| 2.3871 | 6000 | 0.0318 | 0.8953 | 0.8523 | 0.8733 | 0.9345 | |
|
| 2.5860 | 6500 | 0.0311 | 0.8861 | 0.8691 | 0.8775 | 0.9373 | |
|
| 2.7850 | 7000 | 0.0323 | 0.89 | 0.8689 | 0.8793 | 0.9383 | |
|
| 2.9839 | 7500 | 0.0310 | 0.8892 | 0.8780 | 0.8836 | 0.9419 | |
|
| 3.1828 | 8000 | 0.0320 | 0.8817 | 0.8762 | 0.8790 | 0.9397 | |
|
| 3.3817 | 8500 | 0.0291 | 0.8981 | 0.8778 | 0.8878 | 0.9438 | |
|
| 3.5807 | 9000 | 0.0336 | 0.8972 | 0.8792 | 0.8881 | 0.9450 | |
|
| 3.7796 | 9500 | 0.0323 | 0.8927 | 0.8757 | 0.8841 | 0.9424 | |
|
| 3.9785 | 10000 | 0.0315 | 0.9028 | 0.8748 | 0.8886 | 0.9436 | |
|
| 4.1774 | 10500 | 0.0330 | 0.8984 | 0.8855 | 0.8919 | 0.9458 | |
|
| 4.3764 | 11000 | 0.0315 | 0.9023 | 0.8844 | 0.8933 | 0.9469 | |
|
| 4.5753 | 11500 | 0.0305 | 0.9029 | 0.8886 | 0.8957 | 0.9486 | |
|
| 4.6171 | 11605 | 0.0323 | 0.9078 | 0.8856 | 0.8965 | 0.9487 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SpanMarker: 1.4.0 |
|
- Transformers: 4.34.1 |
|
- PyTorch: 2.1.0+cu118 |
|
- Datasets: 2.14.6 |
|
- Tokenizers: 0.14.1 |
|
|
|
## Citation |
|
|
|
|
|
If you use this model, please cite: |
|
``` |
|
@InProceedings{iahlt2023WikiANNArabicNER, |
|
author = "iahlt", |
|
title = "Arabic NER on WikiANN", |
|
year = "2023", |
|
publisher = "", |
|
location = "", |
|
} |
|
``` |
|
|
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |