amazing-logos-v4 / README.md
iamkaikai's picture
End of training
936e614
|
raw
history blame
1.61 kB
metadata
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
datasets:
  - iamkaikai/amazing_logos_v4
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
inference: true

Text-to-image finetuning - iamkaikai/amazing-logos-v4

This pipeline was finetuned from runwayml/stable-diffusion-v1-5 on the iamkaikai/amazing_logos_v4 dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['Simple elegant logo for Grupo Altair Publicidad, Circle Lines Venezuela, Publishing, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges']:

val_imgs_grid

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("iamkaikai/amazing-logos-v4", torch_dtype=torch.float16)
prompt = "Simple elegant logo for Grupo Altair Publicidad, Circle Lines Venezuela, Publishing, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges"
image = pipeline(prompt).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 3
  • Learning rate: 5e-07
  • Batch size: 1
  • Gradient accumulation steps: 1
  • Image resolution: 512
  • Mixed-precision: fp16

More information on all the CLI arguments and the environment are available on your wandb run page.