metadata
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
datasets:
- iamkaikai/amazing_logos_v2
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
Text-to-image finetuning - iamkaikai/amazing-logos
This pipeline was finetuned from runwayml/stable-diffusion-v1-5 on the iamkaikai/amazing_logos_v2 dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['Simple elegant logo for Digital Art, D A Square Symmetrical, successful vibe, minimalist, thought-provoking, abstract, recognizable, black and white']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("iamkaikai/amazing-logos", torch_dtype=torch.float16)
prompt = "Simple elegant logo for Digital Art, D A Square Symmetrical, successful vibe, minimalist, thought-provoking, abstract, recognizable, black and white"
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 12
- Learning rate: 1e-07
- Batch size: 1
- Gradient accumulation steps: 1
- Image resolution: 512
- Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your wandb
run page.