File size: 20,783 Bytes
1efeea2
 
 
 
 
 
 
 
 
 
 
 
 
bbd90f1
1efeea2
 
dd9ce5a
1efeea2
dd9ce5a
1efeea2
 
 
 
 
 
dd9ce5a
1efeea2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408b6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1efeea2
 
 
 
408b6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1efeea2
 
 
 
 
f6d0ad7
dd9ce5a
 
1efeea2
 
dd9ce5a
1efeea2
 
 
 
96ef4b5
 
 
 
 
1efeea2
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.1
---

# Granite-3.1-1B-A400M-Base

**Model Summary:**
Granite-3.1-1B-A400M-Base extends the context length of Granite-3.0-1B-A400M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K. This long-context pre-training stage was performed using approximately 500B tokens.

- **Developers:** Granite Team, IBM
- **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Paper:** [Granite 3.1 Language Models (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d) 
- **Release Date**: December 18th, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

**Supported Languages:** 
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages.

**Intended Use:** 
Prominent use cases of LLMs in text-to-text generation include summarization, text classification, extraction, question-answering, and more. All Granite Base models are able to handle these tasks as they were trained on a large amount of data from various domains. Moreover, they can serve as baseline to create specialized models for specific application scenarios.

**Generation:** 
This is a simple example of how to use Granite-3.1-1B-A400M-Base model.

Install the following libraries:

```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
Then, copy the code snippet below to run the example.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "auto"
model_path = "ibm-granite/granite-3.1-1b-a400m-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
input_text = "Where is the Thomas J. Watson Research Center located?"
# tokenize the text
input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens,
                        max_length=4000)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)
```
**Evaluation Results:**
<table>
  <caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
  </tr></thead>
  <tbody>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">63.99</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">83.27</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">63.45</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">51.29</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">78.92</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">60.19</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">66.85</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.58</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">77.67</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.86</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.02</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">72.84</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.99</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.32</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.76</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.45</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">48.31</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.91</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.29</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">40.56</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.88</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">39.42</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">66.13</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">26.53</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">37.67</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.03</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">18.87</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">31.78</td>
  </tr>
</tbody></table>

<table>
  <caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
  </tr></thead>
  <tbody>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">42.21</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">26.02</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">9.52</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">9.51</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8.36</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">24.8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">20.07</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">35.22</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">16.84</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.59</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.9</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.9</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.19</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">29.96</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11.91</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.11</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">8.81</td>
    <td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">9.91</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">25.19</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.43</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.19</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">0.22</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.76</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.22</td>
  </tr>
</tbody></table>

**Model Architecture:** 
Granite-3.1-1B-A400M-Base is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.

<table>
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
  </tr></thead>
<tbody>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">1024</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">24</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">16</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">12800</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">512</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">1.3B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">3.3B</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">400M</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">800M</td>
  </tr>
  <tr>
    <td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">10T</td>
    <td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
  </tr>
</tbody></table>

**Training Data:** 
This model is trained on a mix of open source and proprietary data following a two-stage training strategy.
* Stage 1 data: The data for stage 1 is sourced from diverse domains, such as: web, code, academic sources, books, and math data.
* Stage 2 data: The data for stage 2 comprises a curated mix of high-quality data from the same domains, plus multilingual and instruction data. The goal of this second training phase is to enhance the model’s performance on specific tasks.
* Stage 3 data: The data for stage 3 consists of original stage-2 pretraining data with additional synthetic long-context data in form of QA/summary pairs where the answer contains a recitation of the related paragraph before the answer.
 
A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).

**Infrastructure:**
We train Granite 3.1 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.

**Ethical Considerations and Limitations:**
The use of Large Language Models involves risks and ethical considerations people must be aware of, including but not limited to: bias and fairness, misinformation, and autonomous decision-making. Granite-3.1-1B-A400M-Base model is not the exception in this regard. Even though this model is suited for multiple generative AI tasks, it has not undergone any safety alignment, there it may produce problematic outputs. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in generation scenarios by copying text verbatim from the training dataset due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain. Regarding ethics, a latent risk associated with all Large Language Models is their malicious utilization. We urge the community to use Granite-3.1-1B-A400M-Base model with ethical intentions and in a responsible way. 

**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources

<!-- ## Citation
```
@misc{granite-models,
  author = {author 1, author2, ...},
  title = {},
  journal = {},
  volume = {},
  year = {2024},
  url = {https://arxiv.org/abs/0000.00000},
}
``` -->