icefog72's picture
Update README.md
b1d0633 verified
metadata
base_model:
  - grimjim/kukulemon-7B
  - Nitral-AI/Kunocchini-7b-128k-test
library_name: transformers
tags:
  - mergekit
  - merge
  - alpaca
  - mistral
license: cc-by-nc-4.0
model-index:
  - name: Kunokukulemonchini-7b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 66.72
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 86.31
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.31
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 61.89
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.2
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b
          name: Open LLM Leaderboard

Kunokukulemonchini-7b

This is a merge of pre-trained language models created using mergekit.

Here is an 4.1bpw exl2 quant Kunokukulemonchini-7b-4.1bpw-exl2 for people like me with 6gb vram.

Thx to Natkituwu for

Advertisement

Merge Details

Slightly edited kukulemon-7B config.json before merge to get at least ~32k context window.

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

How to download, including from branches

From the command line

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

To download the main branch to a folder called Kunokukulemonchini-7b:

mkdir icefog72/Kunokukulemonchini-7b
huggingface-cli download icefog72/Kunokukulemonchini-7b --local-dir Kunokukulemonchini-7b --local-dir-use-symlinks False
More advanced huggingface-cli download usage

If you remove the --local-dir-use-symlinks False parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface), and symlinks will be added to the specified --local-dir, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the HF_HOME environment variable, and/or the --cache-dir parameter to huggingface-cli.

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

mkdir FOLDERNAME
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MODEL --local-dir FOLDERNAME --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

Configuration

The following YAML configuration was used to produce this model:


slices:
  - sources:
      - model: grimjim/kukulemon-7B
        layer_range: [0, 32]
      - model: Nitral-AI/Kunocchini-7b-128k-test
        layer_range: [0, 32]
merge_method: slerp
base_model: Nitral-AI/Kunocchini-7b-128k-test
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: float16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.61
AI2 Reasoning Challenge (25-Shot) 66.72
HellaSwag (10-Shot) 86.31
MMLU (5-Shot) 65.31
TruthfulQA (0-shot) 61.89
Winogrande (5-shot) 78.45
GSM8k (5-shot) 60.20