ijohn07's picture
Upload README.md with huggingface_hub
0194266 verified
metadata
base_model: M4-ai/NeuralReyna-Mini-1.8B-v0.2
datasets:
  - Intel/orca_dpo_pairs
  - Locutusque/Hercules-v3.0
language:
  - en
license: apache-2.0
tags:
  - conversational
  - llama-cpp
  - gguf-my-repo
inference:
  parameters:
    do_sample: true
    temperature: 0.8
    top_p: 0.95
    top_k: 40
    min_new_tokens: 2
    max_new_tokens: 250
    repetition_penalty: 1.1
widget:
  - text: Hello who are you?
    example_title: Identity
  - text: What can you do?
    example_title: Capabilities
  - text: Create a fastapi endpoint to retrieve the weather given a zip code.
    example_title: Coding
model-index:
  - name: NeuralReyna-Mini-1.8B-v0.2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 37.8
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 60.51
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 45.04
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 37.75
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 27.07
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/NeuralReyna-Mini-1.8B-v0.2
          name: Open LLM Leaderboard

ijohn07/NeuralReyna-Mini-1.8B-v0.2-Q8_0-GGUF

This model was converted to GGUF format from M4-ai/NeuralReyna-Mini-1.8B-v0.2 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo ijohn07/NeuralReyna-Mini-1.8B-v0.2-Q8_0-GGUF --hf-file neuralreyna-mini-1.8b-v0.2-q8_0.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo ijohn07/NeuralReyna-Mini-1.8B-v0.2-Q8_0-GGUF --hf-file neuralreyna-mini-1.8b-v0.2-q8_0.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo ijohn07/NeuralReyna-Mini-1.8B-v0.2-Q8_0-GGUF --hf-file neuralreyna-mini-1.8b-v0.2-q8_0.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo ijohn07/NeuralReyna-Mini-1.8B-v0.2-Q8_0-GGUF --hf-file neuralreyna-mini-1.8b-v0.2-q8_0.gguf -c 2048