YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Image2GPS Model Overview
Datasets
- Training Dataset:
image2gpsLLH/image_data
- Evaluation Metrics:
- Accuracy
Model Statistics
- Latitude Mean: 39.95150678400655
- Latitude Standard Deviation: 0.0007344790486223371
- Longitude Mean: -75.19146715269915
- Longitude Standard Deviation: 0.0007342464795497821
Model Description
- Model Type: Vision Transformer (ViT)
Training Data
- Dataset Size: 1325 Images
- Location: Penn Engineering walkways
- Data Collection Method:
- Images captured from different directions at various points:
- North, Northeast, East, Southeast, South, Southwest, West, Northwest
- Images captured from different directions at various points:
Testing Data
- Dataset Size: 441 Images
- Location: Penn Engineering walkways
Factors Affecting Model Performance
- Environmental Conditions: Lighting, weather, time of day
- Image Variability: Different camera angles and perspectives
Training Result
Caption: Example of an image used during training/testing.
Example Execution
https://colab.research.google.com/drive/12mQAu1m65EV5kJlVkigkEOxH8NaLULTS?usp=sharing
!pip install datasets
# Imports
from huggingface_hub import login
from huggingface_hub import hf_hub_download
from torchvision import models
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset
import numpy as np
import os
from sklearn.metrics import mean_absolute_error, mean_squared_error
import timm
from torch import nn
class ViTGeoLocator(nn.Module):
def __init__(self, freeze_backbone=True):
super(ViTGeoLocator, self).__init__()
# Load pretrained ViT
self.backbone = timm.create_model('vit_base_patch16_224', pretrained=True)
if freeze_backbone:
for param in self.backbone.parameters():
param.requires_grad = False
# Get the dimension of the ViT's output
embed_dim = self.backbone.num_features
# Remove the original classification head
self.backbone.head = nn.Identity()
# New regression head
self.regressor = nn.Sequential(
nn.Linear(embed_dim, 512),
nn.GELU(),
nn.Dropout(0.3),
nn.Linear(512, 128),
nn.GELU(),
nn.Dropout(0.2),
nn.Linear(128, 2) # Output: [latitude, longitude]
)
def forward(self, x):
x = self.backbone(x)
return self.regressor(x)
# Log in to Hugging Face
login("replace with huggingface token")
# Specify the repository and model file
repo_id = "image2gpsLLH/vit"
filename = "vit.pth"
# Download the model from Hugging Face
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
# Initialize the model
model_test = ViTGeoLocator(freeze_backbone=True)
# Load the checkpoint
checkpoint = torch.load(model_path)
# Load state dict
model_test.load_state_dict(checkpoint['model_state_dict'])
# Set the model to evaluation mode
model_test.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_test = model_test.to(device)
# Create the DataLoader and run inference
with torch.no_grad():
for images, gps_coords in sample_dataloader:
images, gps_coords = images.to(device), gps_coords.to(device)
outputs = model_test(images)
class GPSImageDataset(Dataset):
def __init__(self, hf_dataset, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None):
self.hf_dataset = hf_dataset
self.transform = transform
# Compute mean and std from the dataframe if not provided
self.latitude_mean = lat_mean if lat_mean is not None else np.mean(np.array(self.hf_dataset['Latitude']))
self.latitude_std = lat_std if lat_std is not None else np.std(np.array(self.hf_dataset['Latitude']))
self.longitude_mean = lon_mean if lon_mean is not None else np.mean(np.array(self.hf_dataset['Longitude']))
self.longitude_std = lon_std if lon_std is not None else np.std(np.array(self.hf_dataset['Longitude']))
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
# Extract data
example = self.hf_dataset[idx]
# Load and process the image
image = example['image']
latitude = example['Latitude']
longitude = example['Longitude']
if self.transform:
image = self.transform(image)
# Normalize GPS coordinates
latitude = (latitude - self.latitude_mean) / self.latitude_std
longitude = (longitude - self.longitude_mean) / self.longitude_std
gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
return image, gps_coords
# Load sample data (replace with path to sample data)
data_sample = load_dataset("gydou/released_img", split="train")
# Specify mean and std for latitude and longitude (replace with the stated mean and std above)
lat_mean: 39.95150678400655
lat_std: 0.0007344790486223371
lon_mean: -75.19146715269915
lon_std: 0.0007342464795497821
# Specify transform
inference_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Create dataloader
sample_dataset = GPSImageDataset(
hf_dataset=data_sample,
transform=inference_transform,
lat_mean=lat_mean,
lat_std=lat_std,
lon_mean=lon_mean,
lon_std=lon_std
)
sample_dataloader = DataLoader(sample_dataset, batch_size=32, shuffle=False)
# Run model
all_preds = []
all_actuals = []
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
for images, gps_coords in sample_dataloader:
images, gps_coords = images.to(device), gps_coords.to(device)
outputs = model_test(images)
# Denormalize predictions and actual values
preds = outputs.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
actuals = gps_coords.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
all_preds.append(preds)
all_actuals.append(actuals)
# Concatenate all batches
all_preds = torch.cat(all_preds).numpy()
all_actuals = torch.cat(all_actuals).numpy()
# Compute error metrics
mae = mean_absolute_error(all_actuals, all_preds)
rmse = mean_squared_error(all_actuals, all_preds, squared=False)
print(f'Mean Absolute Error: {mae}')
print(f'Root Mean Squared Error: {rmse}')