DeepSeek V3 - INT4 (TensorRT-LLM)
This repository provides an INT4-quantized version of the DeepSeek V3 model, suitable for high-speed, memory-efficient inference with TensorRT-LLM.
Model Summary • Base Model: DeepSeek V3 (BF16) <--- (from Nvidia FP8) • Quantization: Weight-only INT4 (W4A16)
python convert_checkpoint.py \
--model_dir /home/user/hf/deepseek-v3-bf16 \
--output_dir /home/user/hf/deepseek-v3-int4 \
--dtype bfloat16 \
--tp_size 4 \
--use_weight_only \
--weight_only_precision int4 \
--workers 4
Hardware reqs:
- 4×80 GB H100 or H200 (Optimal)
Example usage:
trtllm-build --checkpoint_dir /DeepSeek-V3-int4-TensorRT \
--output_dir ./trtllm_engines/deepseek_v3/int4/tp4-sel4096-isl2048-bs4 \
...
Disclaimer:
This model is a quantized checkpoint intended for research and experimentation with high-performance inference. Use at your own risk and validate outputs for production use-cases.
- Downloads last month
- 250
Model tree for inarikami/DeepSeek-V3-int4-TensorRT
Base model
deepseek-ai/DeepSeek-V3