metadata
language:
- bg
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- bg
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Bulgarian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: bg
metrics:
- name: Test WER
type: wer
value: 46.68
- name: Test CER
type: cer
value: 10.75
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: bg
metrics:
- name: Test WER
type: wer
value: 63.68
- name: Test CER
type: cer
value: 19.88
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: bg
metrics:
- name: Test WER
type: wer
value: 64.08
wav2vec2-large-xls-r-300m-bulgarian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BG dataset. It achieves the following results on the evaluation set:
- Loss: 0.4487
- Wer: 0.4674
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.9774 | 6.33 | 500 | 2.9769 | 1.0 |
1.3453 | 12.66 | 1000 | 0.6523 | 0.6980 |
1.1658 | 18.99 | 1500 | 0.5636 | 0.6359 |
1.0797 | 25.32 | 2000 | 0.5004 | 0.5759 |
1.044 | 31.65 | 2500 | 0.4958 | 0.5569 |
0.9915 | 37.97 | 3000 | 0.4971 | 0.5350 |
0.9429 | 44.3 | 3500 | 0.4829 | 0.5229 |
0.9266 | 50.63 | 4000 | 0.4515 | 0.5074 |
0.8965 | 56.96 | 4500 | 0.4599 | 0.5039 |
0.878 | 63.29 | 5000 | 0.4735 | 0.4954 |
0.8494 | 69.62 | 5500 | 0.4460 | 0.4878 |
0.8343 | 75.95 | 6000 | 0.4510 | 0.4795 |
0.8236 | 82.28 | 6500 | 0.4538 | 0.4789 |
0.8069 | 88.61 | 7000 | 0.4526 | 0.4748 |
0.7958 | 94.94 | 7500 | 0.4496 | 0.4700 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0