anton-l's picture
anton-l HF staff
Upload README.md
bcbb45b
metadata
language:
  - ha
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_7_0
  - generated_from_trainer
  - ha
  - robust-speech-event
  - model_for_talk
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_7_0
model-index:
  - name: XLS-R-300M - Hausa
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: ha
        metrics:
          - name: Test WER
            type: wer
            value: 100
          - name: Test CER
            type: cer
            value: 132.32

wav2vec2-large-xls-r-300m-hausa

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5756
  • Wer: 0.6014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.7064 11.36 500 2.7112 1.0
1.3079 22.73 1000 0.7337 0.7776
1.0919 34.09 1500 0.5938 0.7023
0.9546 45.45 2000 0.5698 0.6133
0.8895 56.82 2500 0.5739 0.6142
0.8152 68.18 3000 0.5579 0.6091
0.7703 79.55 3500 0.5813 0.6210
0.732 90.91 4000 0.5756 0.5860

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0