File size: 2,544 Bytes
ff43006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389c46d
 
ff43006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389c46d
ff43006
 
 
 
389c46d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff43006
 
 
 
389c46d
ff43006
389c46d
ff43006
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-hindi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hindi

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6718
- Wer: 0.7103

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.5682        | 2.72  | 400  | 2.1019          | 0.9188 |
| 0.6506        | 5.44  | 800  | 1.9496          | 0.8048 |
| 0.3249        | 8.16  | 1200 | 1.8901          | 0.7515 |
| 0.222         | 10.88 | 1600 | 1.7736          | 0.7115 |
| 0.171         | 13.6  | 2000 | 2.1061          | 0.7507 |
| 0.1428        | 16.33 | 2400 | 2.2476          | 0.7412 |
| 0.1235        | 19.05 | 2800 | 2.3527          | 0.7554 |
| 0.1076        | 21.77 | 3200 | 2.2145          | 0.7404 |
| 0.0982        | 24.49 | 3600 | 2.3603          | 0.7327 |
| 0.0842        | 27.21 | 4000 | 2.4086          | 0.7465 |
| 0.0732        | 29.93 | 4400 | 2.4182          | 0.7259 |
| 0.0672        | 32.65 | 4800 | 2.5249          | 0.7315 |
| 0.0601        | 35.37 | 5200 | 2.5355          | 0.7207 |
| 0.0534        | 38.09 | 5600 | 2.5170          | 0.7191 |
| 0.0477        | 40.81 | 6000 | 2.6001          | 0.7064 |
| 0.0435        | 43.54 | 6400 | 2.7135          | 0.7142 |
| 0.0374        | 46.26 | 6800 | 2.6552          | 0.7127 |
| 0.0348        | 48.98 | 7200 | 2.6718          | 0.7103 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu113
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3