File size: 1,884 Bytes
ff43006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-hindi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hindi

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 5.8345
- Wer: 1.0592

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 400
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 6.0837        | 57.14  | 400  | 3.3819          | 1.0081 |
| 0.2254        | 114.29 | 800  | 4.4935          | 1.0255 |
| 0.061         | 171.43 | 1200 | 5.1464          | 1.0870 |
| 0.0282        | 228.57 | 1600 | 5.6430          | 1.0789 |
| 0.0144        | 285.71 | 2000 | 5.7916          | 1.0940 |
| 0.0077        | 342.86 | 2400 | 5.8701          | 1.0580 |
| 0.0041        | 400.0  | 2800 | 5.8345          | 1.0592 |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.13.3
- Tokenizers 0.10.3