File size: 3,681 Bytes
ff43006
ae07d7b
 
ff43006
 
ae07d7b
ff43006
67d68e3
d699430
 
67d68e3
 
ff43006
82d25df
ff43006
d699430
 
67d68e3
 
d699430
 
 
 
 
 
67d68e3
 
 
 
 
 
ff43006
 
 
 
 
 
 
ae07d7b
ff43006
ae07d7b
 
ff43006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae07d7b
 
 
ff43006
 
 
ae07d7b
 
ff43006
 
 
 
ae07d7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff43006
 
 
 
389c46d
ae07d7b
389c46d
ae07d7b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- hi
- model_for_talk
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Hindi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: hi
    metrics:
    - name: Test WER
      type: wer
      value: 100
    - name: Test CER
      type: cer
      value: 92.98
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-hindi

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5414
- Wer: 1.0194

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.6095        | 3.38  | 500   | 4.5881          | 0.9999 |
| 3.3396        | 6.76  | 1000  | 3.3301          | 1.0001 |
| 2.0061        | 10.14 | 1500  | 1.2096          | 1.0063 |
| 1.523         | 13.51 | 2000  | 0.7836          | 1.0051 |
| 1.3868        | 16.89 | 2500  | 0.6837          | 1.0080 |
| 1.2807        | 20.27 | 3000  | 0.6568          | 1.0112 |
| 1.231         | 23.65 | 3500  | 0.6120          | 1.0105 |
| 1.1673        | 27.03 | 4000  | 0.5972          | 1.0089 |
| 1.1416        | 30.41 | 4500  | 0.5780          | 1.0132 |
| 1.0738        | 33.78 | 5000  | 0.5806          | 1.0123 |
| 1.0771        | 37.16 | 5500  | 0.5586          | 1.0067 |
| 1.0287        | 40.54 | 6000  | 0.5464          | 1.0058 |
| 1.0106        | 43.92 | 6500  | 0.5407          | 1.0062 |
| 0.9538        | 47.3  | 7000  | 0.5334          | 1.0089 |
| 0.9607        | 50.68 | 7500  | 0.5395          | 1.0110 |
| 0.9108        | 54.05 | 8000  | 0.5502          | 1.0137 |
| 0.9252        | 57.43 | 8500  | 0.5498          | 1.0062 |
| 0.8943        | 60.81 | 9000  | 0.5448          | 1.0158 |
| 0.8728        | 64.19 | 9500  | 0.5257          | 1.0113 |
| 0.8577        | 67.57 | 10000 | 0.5550          | 1.0178 |
| 0.8332        | 70.95 | 10500 | 0.5607          | 1.0166 |
| 0.8174        | 74.32 | 11000 | 0.5429          | 1.0145 |
| 0.8168        | 77.7  | 11500 | 0.5561          | 1.0116 |
| 0.7872        | 81.08 | 12000 | 0.5478          | 1.0164 |
| 0.7707        | 84.46 | 12500 | 0.5412          | 1.0216 |
| 0.7742        | 87.84 | 13000 | 0.5391          | 1.0207 |
| 0.7594        | 91.22 | 13500 | 0.5379          | 1.0208 |
| 0.7678        | 94.59 | 14000 | 0.5415          | 1.0198 |
| 0.7502        | 97.97 | 14500 | 0.5409          | 1.0191 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0