File size: 3,681 Bytes
ff43006 ae07d7b ff43006 ae07d7b ff43006 67d68e3 d699430 67d68e3 ff43006 82d25df ff43006 d699430 67d68e3 d699430 67d68e3 ff43006 ae07d7b ff43006 ae07d7b ff43006 ae07d7b ff43006 ae07d7b ff43006 ae07d7b ff43006 389c46d ae07d7b 389c46d ae07d7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- hi
- model_for_talk
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Hindi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: hi
metrics:
- name: Test WER
type: wer
value: 100
- name: Test CER
type: cer
value: 92.98
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hindi
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5414
- Wer: 1.0194
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.6095 | 3.38 | 500 | 4.5881 | 0.9999 |
| 3.3396 | 6.76 | 1000 | 3.3301 | 1.0001 |
| 2.0061 | 10.14 | 1500 | 1.2096 | 1.0063 |
| 1.523 | 13.51 | 2000 | 0.7836 | 1.0051 |
| 1.3868 | 16.89 | 2500 | 0.6837 | 1.0080 |
| 1.2807 | 20.27 | 3000 | 0.6568 | 1.0112 |
| 1.231 | 23.65 | 3500 | 0.6120 | 1.0105 |
| 1.1673 | 27.03 | 4000 | 0.5972 | 1.0089 |
| 1.1416 | 30.41 | 4500 | 0.5780 | 1.0132 |
| 1.0738 | 33.78 | 5000 | 0.5806 | 1.0123 |
| 1.0771 | 37.16 | 5500 | 0.5586 | 1.0067 |
| 1.0287 | 40.54 | 6000 | 0.5464 | 1.0058 |
| 1.0106 | 43.92 | 6500 | 0.5407 | 1.0062 |
| 0.9538 | 47.3 | 7000 | 0.5334 | 1.0089 |
| 0.9607 | 50.68 | 7500 | 0.5395 | 1.0110 |
| 0.9108 | 54.05 | 8000 | 0.5502 | 1.0137 |
| 0.9252 | 57.43 | 8500 | 0.5498 | 1.0062 |
| 0.8943 | 60.81 | 9000 | 0.5448 | 1.0158 |
| 0.8728 | 64.19 | 9500 | 0.5257 | 1.0113 |
| 0.8577 | 67.57 | 10000 | 0.5550 | 1.0178 |
| 0.8332 | 70.95 | 10500 | 0.5607 | 1.0166 |
| 0.8174 | 74.32 | 11000 | 0.5429 | 1.0145 |
| 0.8168 | 77.7 | 11500 | 0.5561 | 1.0116 |
| 0.7872 | 81.08 | 12000 | 0.5478 | 1.0164 |
| 0.7707 | 84.46 | 12500 | 0.5412 | 1.0216 |
| 0.7742 | 87.84 | 13000 | 0.5391 | 1.0207 |
| 0.7594 | 91.22 | 13500 | 0.5379 | 1.0208 |
| 0.7678 | 94.59 | 14000 | 0.5415 | 1.0198 |
| 0.7502 | 97.97 | 14500 | 0.5409 | 1.0191 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|