e5-small / mteb_metadata.md
intfloat's picture
add model weights
f03e79c
|
raw
history blame
62.6 kB
metadata
tags:
  - mteb
model-index:
  - name: mteb_metrics
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 76.22388059701493
          - type: ap
            value: 40.27466219523129
          - type: f1
            value: 70.60533006025108
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 87.525775
          - type: ap
            value: 83.51063993897611
          - type: f1
            value: 87.49342736805572
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 42.611999999999995
          - type: f1
            value: 42.05088045932892
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.826
          - type: map_at_10
            value: 38.269
          - type: map_at_100
            value: 39.322
          - type: map_at_1000
            value: 39.344
          - type: map_at_3
            value: 33.428000000000004
          - type: map_at_5
            value: 36.063
          - type: mrr_at_1
            value: 24.253
          - type: mrr_at_10
            value: 38.425
          - type: mrr_at_100
            value: 39.478
          - type: mrr_at_1000
            value: 39.5
          - type: mrr_at_3
            value: 33.606
          - type: mrr_at_5
            value: 36.195
          - type: ndcg_at_1
            value: 23.826
          - type: ndcg_at_10
            value: 46.693
          - type: ndcg_at_100
            value: 51.469
          - type: ndcg_at_1000
            value: 52.002
          - type: ndcg_at_3
            value: 36.603
          - type: ndcg_at_5
            value: 41.365
          - type: precision_at_1
            value: 23.826
          - type: precision_at_10
            value: 7.383000000000001
          - type: precision_at_100
            value: 0.9530000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 15.268
          - type: precision_at_5
            value: 11.479000000000001
          - type: recall_at_1
            value: 23.826
          - type: recall_at_10
            value: 73.82600000000001
          - type: recall_at_100
            value: 95.306
          - type: recall_at_1000
            value: 99.431
          - type: recall_at_3
            value: 45.804
          - type: recall_at_5
            value: 57.397
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 44.13995374767436
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 37.13950072624313
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 59.35843292105327
          - type: mrr
            value: 73.72312359846987
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 84.55140418324174
          - type: cos_sim_spearman
            value: 84.21637675860022
          - type: euclidean_pearson
            value: 81.26069614610006
          - type: euclidean_spearman
            value: 83.25069210421785
          - type: manhattan_pearson
            value: 80.17441422581014
          - type: manhattan_spearman
            value: 81.87596198487877
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 81.87337662337661
          - type: f1
            value: 81.76647866926402
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 35.80600542614507
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 31.86321613256603
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.054
          - type: map_at_10
            value: 40.699999999999996
          - type: map_at_100
            value: 41.818
          - type: map_at_1000
            value: 41.959999999999994
          - type: map_at_3
            value: 37.742
          - type: map_at_5
            value: 39.427
          - type: mrr_at_1
            value: 38.769999999999996
          - type: mrr_at_10
            value: 46.150000000000006
          - type: mrr_at_100
            value: 46.865
          - type: mrr_at_1000
            value: 46.925
          - type: mrr_at_3
            value: 43.705
          - type: mrr_at_5
            value: 45.214999999999996
          - type: ndcg_at_1
            value: 38.769999999999996
          - type: ndcg_at_10
            value: 45.778
          - type: ndcg_at_100
            value: 50.38
          - type: ndcg_at_1000
            value: 52.922999999999995
          - type: ndcg_at_3
            value: 41.597
          - type: ndcg_at_5
            value: 43.631
          - type: precision_at_1
            value: 38.769999999999996
          - type: precision_at_10
            value: 8.269
          - type: precision_at_100
            value: 1.278
          - type: precision_at_1000
            value: 0.178
          - type: precision_at_3
            value: 19.266
          - type: precision_at_5
            value: 13.705
          - type: recall_at_1
            value: 32.054
          - type: recall_at_10
            value: 54.947
          - type: recall_at_100
            value: 74.79599999999999
          - type: recall_at_1000
            value: 91.40899999999999
          - type: recall_at_3
            value: 42.431000000000004
          - type: recall_at_5
            value: 48.519
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.035
          - type: map_at_10
            value: 38.007000000000005
          - type: map_at_100
            value: 39.125
          - type: map_at_1000
            value: 39.251999999999995
          - type: map_at_3
            value: 35.77
          - type: map_at_5
            value: 37.057
          - type: mrr_at_1
            value: 36.497
          - type: mrr_at_10
            value: 44.077
          - type: mrr_at_100
            value: 44.743
          - type: mrr_at_1000
            value: 44.79
          - type: mrr_at_3
            value: 42.123
          - type: mrr_at_5
            value: 43.308
          - type: ndcg_at_1
            value: 36.497
          - type: ndcg_at_10
            value: 42.986000000000004
          - type: ndcg_at_100
            value: 47.323
          - type: ndcg_at_1000
            value: 49.624
          - type: ndcg_at_3
            value: 39.805
          - type: ndcg_at_5
            value: 41.286
          - type: precision_at_1
            value: 36.497
          - type: precision_at_10
            value: 7.8340000000000005
          - type: precision_at_100
            value: 1.269
          - type: precision_at_1000
            value: 0.178
          - type: precision_at_3
            value: 19.023
          - type: precision_at_5
            value: 13.248
          - type: recall_at_1
            value: 29.035
          - type: recall_at_10
            value: 51.06
          - type: recall_at_100
            value: 69.64099999999999
          - type: recall_at_1000
            value: 84.49
          - type: recall_at_3
            value: 41.333999999999996
          - type: recall_at_5
            value: 45.663
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 37.239
          - type: map_at_10
            value: 47.873
          - type: map_at_100
            value: 48.842999999999996
          - type: map_at_1000
            value: 48.913000000000004
          - type: map_at_3
            value: 45.050000000000004
          - type: map_at_5
            value: 46.498
          - type: mrr_at_1
            value: 42.508
          - type: mrr_at_10
            value: 51.44
          - type: mrr_at_100
            value: 52.087
          - type: mrr_at_1000
            value: 52.129999999999995
          - type: mrr_at_3
            value: 49.164
          - type: mrr_at_5
            value: 50.343
          - type: ndcg_at_1
            value: 42.508
          - type: ndcg_at_10
            value: 53.31399999999999
          - type: ndcg_at_100
            value: 57.245000000000005
          - type: ndcg_at_1000
            value: 58.794000000000004
          - type: ndcg_at_3
            value: 48.295
          - type: ndcg_at_5
            value: 50.415
          - type: precision_at_1
            value: 42.508
          - type: precision_at_10
            value: 8.458
          - type: precision_at_100
            value: 1.133
          - type: precision_at_1000
            value: 0.132
          - type: precision_at_3
            value: 21.191
          - type: precision_at_5
            value: 14.307
          - type: recall_at_1
            value: 37.239
          - type: recall_at_10
            value: 65.99000000000001
          - type: recall_at_100
            value: 82.99499999999999
          - type: recall_at_1000
            value: 94.128
          - type: recall_at_3
            value: 52.382
          - type: recall_at_5
            value: 57.648999999999994
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.039
          - type: map_at_10
            value: 29.694
          - type: map_at_100
            value: 30.587999999999997
          - type: map_at_1000
            value: 30.692999999999998
          - type: map_at_3
            value: 27.708
          - type: map_at_5
            value: 28.774
          - type: mrr_at_1
            value: 24.633
          - type: mrr_at_10
            value: 31.478
          - type: mrr_at_100
            value: 32.299
          - type: mrr_at_1000
            value: 32.381
          - type: mrr_at_3
            value: 29.435
          - type: mrr_at_5
            value: 30.446
          - type: ndcg_at_1
            value: 24.633
          - type: ndcg_at_10
            value: 33.697
          - type: ndcg_at_100
            value: 38.080000000000005
          - type: ndcg_at_1000
            value: 40.812
          - type: ndcg_at_3
            value: 29.654000000000003
          - type: ndcg_at_5
            value: 31.474000000000004
          - type: precision_at_1
            value: 24.633
          - type: precision_at_10
            value: 5.0729999999999995
          - type: precision_at_100
            value: 0.753
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 12.279
          - type: precision_at_5
            value: 8.452
          - type: recall_at_1
            value: 23.039
          - type: recall_at_10
            value: 44.275999999999996
          - type: recall_at_100
            value: 64.4
          - type: recall_at_1000
            value: 85.135
          - type: recall_at_3
            value: 33.394
          - type: recall_at_5
            value: 37.687
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 13.594999999999999
          - type: map_at_10
            value: 19.933999999999997
          - type: map_at_100
            value: 20.966
          - type: map_at_1000
            value: 21.087
          - type: map_at_3
            value: 17.749000000000002
          - type: map_at_5
            value: 19.156000000000002
          - type: mrr_at_1
            value: 17.662
          - type: mrr_at_10
            value: 24.407
          - type: mrr_at_100
            value: 25.385
          - type: mrr_at_1000
            value: 25.465
          - type: mrr_at_3
            value: 22.056
          - type: mrr_at_5
            value: 23.630000000000003
          - type: ndcg_at_1
            value: 17.662
          - type: ndcg_at_10
            value: 24.391
          - type: ndcg_at_100
            value: 29.681
          - type: ndcg_at_1000
            value: 32.923
          - type: ndcg_at_3
            value: 20.271
          - type: ndcg_at_5
            value: 22.621
          - type: precision_at_1
            value: 17.662
          - type: precision_at_10
            value: 4.44
          - type: precision_at_100
            value: 0.8200000000000001
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 9.577
          - type: precision_at_5
            value: 7.313
          - type: recall_at_1
            value: 13.594999999999999
          - type: recall_at_10
            value: 33.976
          - type: recall_at_100
            value: 57.43000000000001
          - type: recall_at_1000
            value: 80.958
          - type: recall_at_3
            value: 22.897000000000002
          - type: recall_at_5
            value: 28.714000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.683
          - type: map_at_10
            value: 35.068
          - type: map_at_100
            value: 36.311
          - type: map_at_1000
            value: 36.436
          - type: map_at_3
            value: 32.371
          - type: map_at_5
            value: 33.761
          - type: mrr_at_1
            value: 32.435
          - type: mrr_at_10
            value: 40.721000000000004
          - type: mrr_at_100
            value: 41.535
          - type: mrr_at_1000
            value: 41.593
          - type: mrr_at_3
            value: 38.401999999999994
          - type: mrr_at_5
            value: 39.567
          - type: ndcg_at_1
            value: 32.435
          - type: ndcg_at_10
            value: 40.538000000000004
          - type: ndcg_at_100
            value: 45.963
          - type: ndcg_at_1000
            value: 48.400999999999996
          - type: ndcg_at_3
            value: 36.048
          - type: ndcg_at_5
            value: 37.899
          - type: precision_at_1
            value: 32.435
          - type: precision_at_10
            value: 7.1129999999999995
          - type: precision_at_100
            value: 1.162
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 16.683
          - type: precision_at_5
            value: 11.684
          - type: recall_at_1
            value: 26.683
          - type: recall_at_10
            value: 51.517
          - type: recall_at_100
            value: 74.553
          - type: recall_at_1000
            value: 90.649
          - type: recall_at_3
            value: 38.495000000000005
          - type: recall_at_5
            value: 43.495
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.186
          - type: map_at_10
            value: 31.972
          - type: map_at_100
            value: 33.117000000000004
          - type: map_at_1000
            value: 33.243
          - type: map_at_3
            value: 29.423
          - type: map_at_5
            value: 30.847
          - type: mrr_at_1
            value: 29.794999999999998
          - type: mrr_at_10
            value: 36.767
          - type: mrr_at_100
            value: 37.645
          - type: mrr_at_1000
            value: 37.716
          - type: mrr_at_3
            value: 34.513
          - type: mrr_at_5
            value: 35.791000000000004
          - type: ndcg_at_1
            value: 29.794999999999998
          - type: ndcg_at_10
            value: 36.786
          - type: ndcg_at_100
            value: 41.94
          - type: ndcg_at_1000
            value: 44.830999999999996
          - type: ndcg_at_3
            value: 32.504
          - type: ndcg_at_5
            value: 34.404
          - type: precision_at_1
            value: 29.794999999999998
          - type: precision_at_10
            value: 6.518
          - type: precision_at_100
            value: 1.0659999999999998
          - type: precision_at_1000
            value: 0.149
          - type: precision_at_3
            value: 15.296999999999999
          - type: precision_at_5
            value: 10.731
          - type: recall_at_1
            value: 24.186
          - type: recall_at_10
            value: 46.617
          - type: recall_at_100
            value: 68.75
          - type: recall_at_1000
            value: 88.864
          - type: recall_at_3
            value: 34.199
          - type: recall_at_5
            value: 39.462
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.22083333333333
          - type: map_at_10
            value: 31.606666666666662
          - type: map_at_100
            value: 32.6195
          - type: map_at_1000
            value: 32.739999999999995
          - type: map_at_3
            value: 29.37825
          - type: map_at_5
            value: 30.596083333333336
          - type: mrr_at_1
            value: 28.607916666666668
          - type: mrr_at_10
            value: 35.54591666666666
          - type: mrr_at_100
            value: 36.33683333333333
          - type: mrr_at_1000
            value: 36.40624999999999
          - type: mrr_at_3
            value: 33.526250000000005
          - type: mrr_at_5
            value: 34.6605
          - type: ndcg_at_1
            value: 28.607916666666668
          - type: ndcg_at_10
            value: 36.07966666666667
          - type: ndcg_at_100
            value: 40.73308333333333
          - type: ndcg_at_1000
            value: 43.40666666666666
          - type: ndcg_at_3
            value: 32.23525
          - type: ndcg_at_5
            value: 33.97083333333333
          - type: precision_at_1
            value: 28.607916666666668
          - type: precision_at_10
            value: 6.120333333333335
          - type: precision_at_100
            value: 0.9921666666666668
          - type: precision_at_1000
            value: 0.14091666666666666
          - type: precision_at_3
            value: 14.54975
          - type: precision_at_5
            value: 10.153166666666667
          - type: recall_at_1
            value: 24.22083333333333
          - type: recall_at_10
            value: 45.49183333333334
          - type: recall_at_100
            value: 66.28133333333332
          - type: recall_at_1000
            value: 85.16541666666667
          - type: recall_at_3
            value: 34.6485
          - type: recall_at_5
            value: 39.229749999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.842
          - type: map_at_10
            value: 27.573999999999998
          - type: map_at_100
            value: 28.410999999999998
          - type: map_at_1000
            value: 28.502
          - type: map_at_3
            value: 25.921
          - type: map_at_5
            value: 26.888
          - type: mrr_at_1
            value: 24.08
          - type: mrr_at_10
            value: 29.915999999999997
          - type: mrr_at_100
            value: 30.669
          - type: mrr_at_1000
            value: 30.746000000000002
          - type: mrr_at_3
            value: 28.349000000000004
          - type: mrr_at_5
            value: 29.246
          - type: ndcg_at_1
            value: 24.08
          - type: ndcg_at_10
            value: 30.898999999999997
          - type: ndcg_at_100
            value: 35.272999999999996
          - type: ndcg_at_1000
            value: 37.679
          - type: ndcg_at_3
            value: 27.881
          - type: ndcg_at_5
            value: 29.432000000000002
          - type: precision_at_1
            value: 24.08
          - type: precision_at_10
            value: 4.678
          - type: precision_at_100
            value: 0.744
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 11.860999999999999
          - type: precision_at_5
            value: 8.16
          - type: recall_at_1
            value: 21.842
          - type: recall_at_10
            value: 38.66
          - type: recall_at_100
            value: 59.169000000000004
          - type: recall_at_1000
            value: 76.887
          - type: recall_at_3
            value: 30.532999999999998
          - type: recall_at_5
            value: 34.354
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.145
          - type: map_at_10
            value: 22.729
          - type: map_at_100
            value: 23.574
          - type: map_at_1000
            value: 23.695
          - type: map_at_3
            value: 21.044
          - type: map_at_5
            value: 21.981
          - type: mrr_at_1
            value: 20.888
          - type: mrr_at_10
            value: 26.529000000000003
          - type: mrr_at_100
            value: 27.308
          - type: mrr_at_1000
            value: 27.389000000000003
          - type: mrr_at_3
            value: 24.868000000000002
          - type: mrr_at_5
            value: 25.825
          - type: ndcg_at_1
            value: 20.888
          - type: ndcg_at_10
            value: 26.457000000000004
          - type: ndcg_at_100
            value: 30.764000000000003
          - type: ndcg_at_1000
            value: 33.825
          - type: ndcg_at_3
            value: 23.483999999999998
          - type: ndcg_at_5
            value: 24.836
          - type: precision_at_1
            value: 20.888
          - type: precision_at_10
            value: 4.58
          - type: precision_at_100
            value: 0.784
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 10.874
          - type: precision_at_5
            value: 7.639
          - type: recall_at_1
            value: 17.145
          - type: recall_at_10
            value: 33.938
          - type: recall_at_100
            value: 53.672
          - type: recall_at_1000
            value: 76.023
          - type: recall_at_3
            value: 25.363000000000003
          - type: recall_at_5
            value: 29.023
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.275
          - type: map_at_10
            value: 30.438
          - type: map_at_100
            value: 31.489
          - type: map_at_1000
            value: 31.601000000000003
          - type: map_at_3
            value: 28.647
          - type: map_at_5
            value: 29.660999999999998
          - type: mrr_at_1
            value: 28.077999999999996
          - type: mrr_at_10
            value: 34.098
          - type: mrr_at_100
            value: 35.025
          - type: mrr_at_1000
            value: 35.109
          - type: mrr_at_3
            value: 32.4
          - type: mrr_at_5
            value: 33.379999999999995
          - type: ndcg_at_1
            value: 28.077999999999996
          - type: ndcg_at_10
            value: 34.271
          - type: ndcg_at_100
            value: 39.352
          - type: ndcg_at_1000
            value: 42.199
          - type: ndcg_at_3
            value: 30.978
          - type: ndcg_at_5
            value: 32.498
          - type: precision_at_1
            value: 28.077999999999996
          - type: precision_at_10
            value: 5.345
          - type: precision_at_100
            value: 0.897
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 13.526
          - type: precision_at_5
            value: 9.16
          - type: recall_at_1
            value: 24.275
          - type: recall_at_10
            value: 42.362
          - type: recall_at_100
            value: 64.461
          - type: recall_at_1000
            value: 84.981
          - type: recall_at_3
            value: 33.249
          - type: recall_at_5
            value: 37.214999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.358
          - type: map_at_10
            value: 30.062
          - type: map_at_100
            value: 31.189
          - type: map_at_1000
            value: 31.386999999999997
          - type: map_at_3
            value: 27.672
          - type: map_at_5
            value: 28.76
          - type: mrr_at_1
            value: 26.877000000000002
          - type: mrr_at_10
            value: 33.948
          - type: mrr_at_100
            value: 34.746
          - type: mrr_at_1000
            value: 34.816
          - type: mrr_at_3
            value: 31.884
          - type: mrr_at_5
            value: 33.001000000000005
          - type: ndcg_at_1
            value: 26.877000000000002
          - type: ndcg_at_10
            value: 34.977000000000004
          - type: ndcg_at_100
            value: 39.753
          - type: ndcg_at_1000
            value: 42.866
          - type: ndcg_at_3
            value: 30.956
          - type: ndcg_at_5
            value: 32.381
          - type: precision_at_1
            value: 26.877000000000002
          - type: precision_at_10
            value: 6.7
          - type: precision_at_100
            value: 1.287
          - type: precision_at_1000
            value: 0.215
          - type: precision_at_3
            value: 14.360999999999999
          - type: precision_at_5
            value: 10.119
          - type: recall_at_1
            value: 22.358
          - type: recall_at_10
            value: 44.183
          - type: recall_at_100
            value: 67.14
          - type: recall_at_1000
            value: 87.53999999999999
          - type: recall_at_3
            value: 32.79
          - type: recall_at_5
            value: 36.829
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.198999999999998
          - type: map_at_10
            value: 25.229000000000003
          - type: map_at_100
            value: 26.003
          - type: map_at_1000
            value: 26.111
          - type: map_at_3
            value: 23.442
          - type: map_at_5
            value: 24.343
          - type: mrr_at_1
            value: 21.072
          - type: mrr_at_10
            value: 27.02
          - type: mrr_at_100
            value: 27.735
          - type: mrr_at_1000
            value: 27.815
          - type: mrr_at_3
            value: 25.416
          - type: mrr_at_5
            value: 26.173999999999996
          - type: ndcg_at_1
            value: 21.072
          - type: ndcg_at_10
            value: 28.862
          - type: ndcg_at_100
            value: 33.043
          - type: ndcg_at_1000
            value: 36.003
          - type: ndcg_at_3
            value: 25.35
          - type: ndcg_at_5
            value: 26.773000000000003
          - type: precision_at_1
            value: 21.072
          - type: precision_at_10
            value: 4.436
          - type: precision_at_100
            value: 0.713
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 10.659
          - type: precision_at_5
            value: 7.32
          - type: recall_at_1
            value: 19.198999999999998
          - type: recall_at_10
            value: 38.376
          - type: recall_at_100
            value: 58.36900000000001
          - type: recall_at_1000
            value: 80.92099999999999
          - type: recall_at_3
            value: 28.715000000000003
          - type: recall_at_5
            value: 32.147
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.9319999999999995
          - type: map_at_10
            value: 10.483
          - type: map_at_100
            value: 11.97
          - type: map_at_1000
            value: 12.171999999999999
          - type: map_at_3
            value: 8.477
          - type: map_at_5
            value: 9.495000000000001
          - type: mrr_at_1
            value: 13.094
          - type: mrr_at_10
            value: 21.282
          - type: mrr_at_100
            value: 22.556
          - type: mrr_at_1000
            value: 22.628999999999998
          - type: mrr_at_3
            value: 18.218999999999998
          - type: mrr_at_5
            value: 19.900000000000002
          - type: ndcg_at_1
            value: 13.094
          - type: ndcg_at_10
            value: 15.811
          - type: ndcg_at_100
            value: 23.035
          - type: ndcg_at_1000
            value: 27.089999999999996
          - type: ndcg_at_3
            value: 11.905000000000001
          - type: ndcg_at_5
            value: 13.377
          - type: precision_at_1
            value: 13.094
          - type: precision_at_10
            value: 5.225
          - type: precision_at_100
            value: 1.2970000000000002
          - type: precision_at_1000
            value: 0.203
          - type: precision_at_3
            value: 8.86
          - type: precision_at_5
            value: 7.309
          - type: recall_at_1
            value: 5.9319999999999995
          - type: recall_at_10
            value: 20.305
          - type: recall_at_100
            value: 46.314
          - type: recall_at_1000
            value: 69.612
          - type: recall_at_3
            value: 11.21
          - type: recall_at_5
            value: 14.773
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.674
          - type: map_at_10
            value: 17.822
          - type: map_at_100
            value: 24.794
          - type: map_at_1000
            value: 26.214
          - type: map_at_3
            value: 12.690999999999999
          - type: map_at_5
            value: 15.033
          - type: mrr_at_1
            value: 61.75000000000001
          - type: mrr_at_10
            value: 71.58
          - type: mrr_at_100
            value: 71.923
          - type: mrr_at_1000
            value: 71.932
          - type: mrr_at_3
            value: 70.125
          - type: mrr_at_5
            value: 71.038
          - type: ndcg_at_1
            value: 51
          - type: ndcg_at_10
            value: 38.637
          - type: ndcg_at_100
            value: 42.398
          - type: ndcg_at_1000
            value: 48.962
          - type: ndcg_at_3
            value: 43.29
          - type: ndcg_at_5
            value: 40.763
          - type: precision_at_1
            value: 61.75000000000001
          - type: precision_at_10
            value: 30.125
          - type: precision_at_100
            value: 9.53
          - type: precision_at_1000
            value: 1.9619999999999997
          - type: precision_at_3
            value: 45.583
          - type: precision_at_5
            value: 38.95
          - type: recall_at_1
            value: 8.674
          - type: recall_at_10
            value: 23.122
          - type: recall_at_100
            value: 47.46
          - type: recall_at_1000
            value: 67.662
          - type: recall_at_3
            value: 13.946
          - type: recall_at_5
            value: 17.768
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 46.86000000000001
          - type: f1
            value: 41.343580452760776
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 36.609
          - type: map_at_10
            value: 47.552
          - type: map_at_100
            value: 48.283
          - type: map_at_1000
            value: 48.321
          - type: map_at_3
            value: 44.869
          - type: map_at_5
            value: 46.509
          - type: mrr_at_1
            value: 39.214
          - type: mrr_at_10
            value: 50.434999999999995
          - type: mrr_at_100
            value: 51.122
          - type: mrr_at_1000
            value: 51.151
          - type: mrr_at_3
            value: 47.735
          - type: mrr_at_5
            value: 49.394
          - type: ndcg_at_1
            value: 39.214
          - type: ndcg_at_10
            value: 53.52400000000001
          - type: ndcg_at_100
            value: 56.997
          - type: ndcg_at_1000
            value: 57.975
          - type: ndcg_at_3
            value: 48.173
          - type: ndcg_at_5
            value: 51.05800000000001
          - type: precision_at_1
            value: 39.214
          - type: precision_at_10
            value: 7.573
          - type: precision_at_100
            value: 0.9440000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 19.782
          - type: precision_at_5
            value: 13.453000000000001
          - type: recall_at_1
            value: 36.609
          - type: recall_at_10
            value: 69.247
          - type: recall_at_100
            value: 84.99600000000001
          - type: recall_at_1000
            value: 92.40899999999999
          - type: recall_at_3
            value: 54.856
          - type: recall_at_5
            value: 61.797000000000004
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.466
          - type: map_at_10
            value: 27.060000000000002
          - type: map_at_100
            value: 28.511999999999997
          - type: map_at_1000
            value: 28.693
          - type: map_at_3
            value: 22.777
          - type: map_at_5
            value: 25.086000000000002
          - type: mrr_at_1
            value: 32.716
          - type: mrr_at_10
            value: 41.593999999999994
          - type: mrr_at_100
            value: 42.370000000000005
          - type: mrr_at_1000
            value: 42.419000000000004
          - type: mrr_at_3
            value: 38.143
          - type: mrr_at_5
            value: 40.288000000000004
          - type: ndcg_at_1
            value: 32.716
          - type: ndcg_at_10
            value: 34.795
          - type: ndcg_at_100
            value: 40.58
          - type: ndcg_at_1000
            value: 43.993
          - type: ndcg_at_3
            value: 29.573
          - type: ndcg_at_5
            value: 31.583
          - type: precision_at_1
            value: 32.716
          - type: precision_at_10
            value: 9.937999999999999
          - type: precision_at_100
            value: 1.585
          - type: precision_at_1000
            value: 0.22
          - type: precision_at_3
            value: 19.496
          - type: precision_at_5
            value: 15.247
          - type: recall_at_1
            value: 16.466
          - type: recall_at_10
            value: 42.886
          - type: recall_at_100
            value: 64.724
          - type: recall_at_1000
            value: 85.347
          - type: recall_at_3
            value: 26.765
          - type: recall_at_5
            value: 33.603
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 33.025
          - type: map_at_10
            value: 47.343
          - type: map_at_100
            value: 48.207
          - type: map_at_1000
            value: 48.281
          - type: map_at_3
            value: 44.519
          - type: map_at_5
            value: 46.217000000000006
          - type: mrr_at_1
            value: 66.05
          - type: mrr_at_10
            value: 72.94699999999999
          - type: mrr_at_100
            value: 73.289
          - type: mrr_at_1000
            value: 73.30499999999999
          - type: mrr_at_3
            value: 71.686
          - type: mrr_at_5
            value: 72.491
          - type: ndcg_at_1
            value: 66.05
          - type: ndcg_at_10
            value: 56.338
          - type: ndcg_at_100
            value: 59.599999999999994
          - type: ndcg_at_1000
            value: 61.138000000000005
          - type: ndcg_at_3
            value: 52.034000000000006
          - type: ndcg_at_5
            value: 54.352000000000004
          - type: precision_at_1
            value: 66.05
          - type: precision_at_10
            value: 11.693000000000001
          - type: precision_at_100
            value: 1.425
          - type: precision_at_1000
            value: 0.163
          - type: precision_at_3
            value: 32.613
          - type: precision_at_5
            value: 21.401999999999997
          - type: recall_at_1
            value: 33.025
          - type: recall_at_10
            value: 58.467
          - type: recall_at_100
            value: 71.242
          - type: recall_at_1000
            value: 81.452
          - type: recall_at_3
            value: 48.92
          - type: recall_at_5
            value: 53.504
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 75.5492
          - type: ap
            value: 69.42911637216271
          - type: f1
            value: 75.39113704261024
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.173
          - type: map_at_10
            value: 35.453
          - type: map_at_100
            value: 36.573
          - type: map_at_1000
            value: 36.620999999999995
          - type: map_at_3
            value: 31.655
          - type: map_at_5
            value: 33.823
          - type: mrr_at_1
            value: 23.868000000000002
          - type: mrr_at_10
            value: 36.085
          - type: mrr_at_100
            value: 37.15
          - type: mrr_at_1000
            value: 37.193
          - type: mrr_at_3
            value: 32.376
          - type: mrr_at_5
            value: 34.501
          - type: ndcg_at_1
            value: 23.854
          - type: ndcg_at_10
            value: 42.33
          - type: ndcg_at_100
            value: 47.705999999999996
          - type: ndcg_at_1000
            value: 48.91
          - type: ndcg_at_3
            value: 34.604
          - type: ndcg_at_5
            value: 38.473
          - type: precision_at_1
            value: 23.854
          - type: precision_at_10
            value: 6.639
          - type: precision_at_100
            value: 0.932
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.685
          - type: precision_at_5
            value: 10.782
          - type: recall_at_1
            value: 23.173
          - type: recall_at_10
            value: 63.441
          - type: recall_at_100
            value: 88.25
          - type: recall_at_1000
            value: 97.438
          - type: recall_at_3
            value: 42.434
          - type: recall_at_5
            value: 51.745
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 92.05426356589147
          - type: f1
            value: 91.88068588063942
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 73.23985408116735
          - type: f1
            value: 55.858906745287506
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 72.21923335574984
          - type: f1
            value: 70.0174116204253
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 75.77673167451245
          - type: f1
            value: 75.44811354778666
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.340414710728737
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 28.196676760061578
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 29.564149683482206
          - type: mrr
            value: 30.28995474250486
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.93
          - type: map_at_10
            value: 12.828000000000001
          - type: map_at_100
            value: 15.501000000000001
          - type: map_at_1000
            value: 16.791
          - type: map_at_3
            value: 9.727
          - type: map_at_5
            value: 11.318999999999999
          - type: mrr_at_1
            value: 47.678
          - type: mrr_at_10
            value: 55.893
          - type: mrr_at_100
            value: 56.491
          - type: mrr_at_1000
            value: 56.53
          - type: mrr_at_3
            value: 54.386
          - type: mrr_at_5
            value: 55.516
          - type: ndcg_at_1
            value: 45.975
          - type: ndcg_at_10
            value: 33.928999999999995
          - type: ndcg_at_100
            value: 30.164
          - type: ndcg_at_1000
            value: 38.756
          - type: ndcg_at_3
            value: 41.077000000000005
          - type: ndcg_at_5
            value: 38.415
          - type: precision_at_1
            value: 47.678
          - type: precision_at_10
            value: 24.365000000000002
          - type: precision_at_100
            value: 7.344
          - type: precision_at_1000
            value: 1.994
          - type: precision_at_3
            value: 38.184000000000005
          - type: precision_at_5
            value: 33.003
          - type: recall_at_1
            value: 5.93
          - type: recall_at_10
            value: 16.239
          - type: recall_at_100
            value: 28.782999999999998
          - type: recall_at_1000
            value: 60.11
          - type: recall_at_3
            value: 10.700999999999999
          - type: recall_at_5
            value: 13.584
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 36.163000000000004
          - type: map_at_10
            value: 51.520999999999994
          - type: map_at_100
            value: 52.449
          - type: map_at_1000
            value: 52.473000000000006
          - type: map_at_3
            value: 47.666
          - type: map_at_5
            value: 50.043000000000006
          - type: mrr_at_1
            value: 40.266999999999996
          - type: mrr_at_10
            value: 54.074
          - type: mrr_at_100
            value: 54.722
          - type: mrr_at_1000
            value: 54.739000000000004
          - type: mrr_at_3
            value: 51.043000000000006
          - type: mrr_at_5
            value: 52.956
          - type: ndcg_at_1
            value: 40.238
          - type: ndcg_at_10
            value: 58.73199999999999
          - type: ndcg_at_100
            value: 62.470000000000006
          - type: ndcg_at_1000
            value: 63.083999999999996
          - type: ndcg_at_3
            value: 51.672
          - type: ndcg_at_5
            value: 55.564
          - type: precision_at_1
            value: 40.238
          - type: precision_at_10
            value: 9.279
          - type: precision_at_100
            value: 1.139
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 23.078000000000003
          - type: precision_at_5
            value: 16.176
          - type: recall_at_1
            value: 36.163000000000004
          - type: recall_at_10
            value: 77.88199999999999
          - type: recall_at_100
            value: 93.83399999999999
          - type: recall_at_1000
            value: 98.465
          - type: recall_at_3
            value: 59.857000000000006
          - type: recall_at_5
            value: 68.73599999999999
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.344
          - type: map_at_10
            value: 83.907
          - type: map_at_100
            value: 84.536
          - type: map_at_1000
            value: 84.557
          - type: map_at_3
            value: 80.984
          - type: map_at_5
            value: 82.844
          - type: mrr_at_1
            value: 81.02000000000001
          - type: mrr_at_10
            value: 87.158
          - type: mrr_at_100
            value: 87.268
          - type: mrr_at_1000
            value: 87.26899999999999
          - type: mrr_at_3
            value: 86.17
          - type: mrr_at_5
            value: 86.87
          - type: ndcg_at_1
            value: 81.02000000000001
          - type: ndcg_at_10
            value: 87.70700000000001
          - type: ndcg_at_100
            value: 89.004
          - type: ndcg_at_1000
            value: 89.139
          - type: ndcg_at_3
            value: 84.841
          - type: ndcg_at_5
            value: 86.455
          - type: precision_at_1
            value: 81.02000000000001
          - type: precision_at_10
            value: 13.248999999999999
          - type: precision_at_100
            value: 1.516
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 36.963
          - type: precision_at_5
            value: 24.33
          - type: recall_at_1
            value: 70.344
          - type: recall_at_10
            value: 94.75099999999999
          - type: recall_at_100
            value: 99.30499999999999
          - type: recall_at_1000
            value: 99.928
          - type: recall_at_3
            value: 86.506
          - type: recall_at_5
            value: 91.083
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 42.873718018378305
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 56.39477366450528
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.868
          - type: map_at_10
            value: 9.611
          - type: map_at_100
            value: 11.087
          - type: map_at_1000
            value: 11.332
          - type: map_at_3
            value: 6.813
          - type: map_at_5
            value: 8.233
          - type: mrr_at_1
            value: 19
          - type: mrr_at_10
            value: 28.457
          - type: mrr_at_100
            value: 29.613
          - type: mrr_at_1000
            value: 29.695
          - type: mrr_at_3
            value: 25.55
          - type: mrr_at_5
            value: 27.29
          - type: ndcg_at_1
            value: 19
          - type: ndcg_at_10
            value: 16.419
          - type: ndcg_at_100
            value: 22.817999999999998
          - type: ndcg_at_1000
            value: 27.72
          - type: ndcg_at_3
            value: 15.379000000000001
          - type: ndcg_at_5
            value: 13.645
          - type: precision_at_1
            value: 19
          - type: precision_at_10
            value: 8.540000000000001
          - type: precision_at_100
            value: 1.7819999999999998
          - type: precision_at_1000
            value: 0.297
          - type: precision_at_3
            value: 14.267
          - type: precision_at_5
            value: 12.04
          - type: recall_at_1
            value: 3.868
          - type: recall_at_10
            value: 17.288
          - type: recall_at_100
            value: 36.144999999999996
          - type: recall_at_1000
            value: 60.199999999999996
          - type: recall_at_3
            value: 8.688
          - type: recall_at_5
            value: 12.198
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 83.96614722598582
          - type: cos_sim_spearman
            value: 78.9003023008781
          - type: euclidean_pearson
            value: 81.01829384436505
          - type: euclidean_spearman
            value: 78.93248416788914
          - type: manhattan_pearson
            value: 81.1665428926402
          - type: manhattan_spearman
            value: 78.93264116287453
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 83.54613363895993
          - type: cos_sim_spearman
            value: 75.1883451602451
          - type: euclidean_pearson
            value: 79.70320886899894
          - type: euclidean_spearman
            value: 74.5917140136796
          - type: manhattan_pearson
            value: 79.82157067185999
          - type: manhattan_spearman
            value: 74.74185720594735
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 81.30430156721782
          - type: cos_sim_spearman
            value: 81.79962989974364
          - type: euclidean_pearson
            value: 80.89058823224924
          - type: euclidean_spearman
            value: 81.35929372984597
          - type: manhattan_pearson
            value: 81.12204370487478
          - type: manhattan_spearman
            value: 81.6248963282232
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 81.13064504403134
          - type: cos_sim_spearman
            value: 78.48371403924872
          - type: euclidean_pearson
            value: 80.16794919665591
          - type: euclidean_spearman
            value: 78.29216082221699
          - type: manhattan_pearson
            value: 80.22308565207301
          - type: manhattan_spearman
            value: 78.37829229948022
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.52918899541099
          - type: cos_sim_spearman
            value: 87.49276894673142
          - type: euclidean_pearson
            value: 86.77440570164254
          - type: euclidean_spearman
            value: 87.5753295736756
          - type: manhattan_pearson
            value: 86.86098573892133
          - type: manhattan_spearman
            value: 87.65848591821947
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 82.86805307244882
          - type: cos_sim_spearman
            value: 84.58066253757511
          - type: euclidean_pearson
            value: 84.38377000876991
          - type: euclidean_spearman
            value: 85.1837278784528
          - type: manhattan_pearson
            value: 84.41903291363842
          - type: manhattan_spearman
            value: 85.19023736251052
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 86.77218560282436
          - type: cos_sim_spearman
            value: 87.94243515296604
          - type: euclidean_pearson
            value: 88.22800939214864
          - type: euclidean_spearman
            value: 87.91106839439841
          - type: manhattan_pearson
            value: 88.17063269848741
          - type: manhattan_spearman
            value: 87.72751904126062
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 60.40731554300387
          - type: cos_sim_spearman
            value: 63.76300532966479
          - type: euclidean_pearson
            value: 62.94727878229085
          - type: euclidean_spearman
            value: 63.678039531461216
          - type: manhattan_pearson
            value: 63.00661039863549
          - type: manhattan_spearman
            value: 63.6282591984376
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 84.92731569745344
          - type: cos_sim_spearman
            value: 86.36336704300167
          - type: euclidean_pearson
            value: 86.09122224841195
          - type: euclidean_spearman
            value: 86.2116149319238
          - type: manhattan_pearson
            value: 86.07879456717032
          - type: manhattan_spearman
            value: 86.2022069635119
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 79.75976311752326
          - type: mrr
            value: 94.15782837351466
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 51.193999999999996
          - type: map_at_10
            value: 61.224999999999994
          - type: map_at_100
            value: 62.031000000000006
          - type: map_at_1000
            value: 62.066
          - type: map_at_3
            value: 59.269000000000005
          - type: map_at_5
            value: 60.159
          - type: mrr_at_1
            value: 53.667
          - type: mrr_at_10
            value: 62.74999999999999
          - type: mrr_at_100
            value: 63.39399999999999
          - type: mrr_at_1000
            value: 63.425
          - type: mrr_at_3
            value: 61.389
          - type: mrr_at_5
            value: 61.989000000000004
          - type: ndcg_at_1
            value: 53.667
          - type: ndcg_at_10
            value: 65.596
          - type: ndcg_at_100
            value: 68.906
          - type: ndcg_at_1000
            value: 69.78999999999999
          - type: ndcg_at_3
            value: 62.261
          - type: ndcg_at_5
            value: 63.453
          - type: precision_at_1
            value: 53.667
          - type: precision_at_10
            value: 8.667
          - type: precision_at_100
            value: 1.04
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 24.556
          - type: precision_at_5
            value: 15.6
          - type: recall_at_1
            value: 51.193999999999996
          - type: recall_at_10
            value: 77.156
          - type: recall_at_100
            value: 91.43299999999999
          - type: recall_at_1000
            value: 98.333
          - type: recall_at_3
            value: 67.994
          - type: recall_at_5
            value: 71.14399999999999
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.81485148514851
          - type: cos_sim_ap
            value: 95.28896513388551
          - type: cos_sim_f1
            value: 90.43478260869566
          - type: cos_sim_precision
            value: 92.56544502617801
          - type: cos_sim_recall
            value: 88.4
          - type: dot_accuracy
            value: 99.30594059405941
          - type: dot_ap
            value: 61.6432597455472
          - type: dot_f1
            value: 59.46481665014866
          - type: dot_precision
            value: 58.93909626719057
          - type: dot_recall
            value: 60
          - type: euclidean_accuracy
            value: 99.81980198019802
          - type: euclidean_ap
            value: 95.21411049527
          - type: euclidean_f1
            value: 91.06090373280944
          - type: euclidean_precision
            value: 89.47876447876449
          - type: euclidean_recall
            value: 92.7
          - type: manhattan_accuracy
            value: 99.81782178217821
          - type: manhattan_ap
            value: 95.32449994414968
          - type: manhattan_f1
            value: 90.86395233366436
          - type: manhattan_precision
            value: 90.23668639053254
          - type: manhattan_recall
            value: 91.5
          - type: max_accuracy
            value: 99.81980198019802
          - type: max_ap
            value: 95.32449994414968
          - type: max_f1
            value: 91.06090373280944
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 59.08045614613064
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 30.297802606804748
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 49.12801740706292
          - type: mrr
            value: 50.05592956879722
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 23.380995453661917
          - type: cos_sim_spearman
            value: 24.941761858688917
          - type: dot_pearson
            value: 24.930577961642413
          - type: dot_spearman
            value: 24.804715835064492
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.243
          - type: map_at_10
            value: 1.886
          - type: map_at_100
            value: 10.040000000000001
          - type: map_at_1000
            value: 23.768
          - type: map_at_3
            value: 0.674
          - type: map_at_5
            value: 1.079
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 93.667
          - type: mrr_at_100
            value: 93.667
          - type: mrr_at_1000
            value: 93.667
          - type: mrr_at_3
            value: 93.667
          - type: mrr_at_5
            value: 93.667
          - type: ndcg_at_1
            value: 83
          - type: ndcg_at_10
            value: 76.777
          - type: ndcg_at_100
            value: 55.153
          - type: ndcg_at_1000
            value: 47.912
          - type: ndcg_at_3
            value: 81.358
          - type: ndcg_at_5
            value: 80.74799999999999
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 80.80000000000001
          - type: precision_at_100
            value: 56.02
          - type: precision_at_1000
            value: 21.51
          - type: precision_at_3
            value: 86
          - type: precision_at_5
            value: 86
          - type: recall_at_1
            value: 0.243
          - type: recall_at_10
            value: 2.0869999999999997
          - type: recall_at_100
            value: 13.014000000000001
          - type: recall_at_1000
            value: 44.433
          - type: recall_at_3
            value: 0.6910000000000001
          - type: recall_at_5
            value: 1.1440000000000001
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.066
          - type: map_at_10
            value: 10.615
          - type: map_at_100
            value: 16.463
          - type: map_at_1000
            value: 17.815
          - type: map_at_3
            value: 5.7860000000000005
          - type: map_at_5
            value: 7.353999999999999
          - type: mrr_at_1
            value: 38.775999999999996
          - type: mrr_at_10
            value: 53.846000000000004
          - type: mrr_at_100
            value: 54.37
          - type: mrr_at_1000
            value: 54.37
          - type: mrr_at_3
            value: 48.980000000000004
          - type: mrr_at_5
            value: 51.735
          - type: ndcg_at_1
            value: 34.694
          - type: ndcg_at_10
            value: 26.811
          - type: ndcg_at_100
            value: 37.342999999999996
          - type: ndcg_at_1000
            value: 47.964
          - type: ndcg_at_3
            value: 30.906
          - type: ndcg_at_5
            value: 27.77
          - type: precision_at_1
            value: 38.775999999999996
          - type: precision_at_10
            value: 23.878
          - type: precision_at_100
            value: 7.632999999999999
          - type: precision_at_1000
            value: 1.469
          - type: precision_at_3
            value: 31.973000000000003
          - type: precision_at_5
            value: 26.939
          - type: recall_at_1
            value: 3.066
          - type: recall_at_10
            value: 17.112
          - type: recall_at_100
            value: 47.723
          - type: recall_at_1000
            value: 79.50500000000001
          - type: recall_at_3
            value: 6.825
          - type: recall_at_5
            value: 9.584
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 72.76460000000002
          - type: ap
            value: 14.944240012137053
          - type: f1
            value: 55.89805777266571
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 63.30503678551217
          - type: f1
            value: 63.57492701921179
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 37.51066495006874
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 86.07021517553794
          - type: cos_sim_ap
            value: 74.15520712370555
          - type: cos_sim_f1
            value: 68.64321608040201
          - type: cos_sim_precision
            value: 65.51558752997602
          - type: cos_sim_recall
            value: 72.0844327176781
          - type: dot_accuracy
            value: 80.23484532395541
          - type: dot_ap
            value: 54.298763810214176
          - type: dot_f1
            value: 53.22254659779924
          - type: dot_precision
            value: 46.32525410476936
          - type: dot_recall
            value: 62.532981530343015
          - type: euclidean_accuracy
            value: 86.04637301066937
          - type: euclidean_ap
            value: 73.85333854233123
          - type: euclidean_f1
            value: 68.77723660599845
          - type: euclidean_precision
            value: 66.87437686939182
          - type: euclidean_recall
            value: 70.79155672823218
          - type: manhattan_accuracy
            value: 85.98676759849795
          - type: manhattan_ap
            value: 73.56016090035973
          - type: manhattan_f1
            value: 68.48878539036647
          - type: manhattan_precision
            value: 63.9505607690547
          - type: manhattan_recall
            value: 73.7203166226913
          - type: max_accuracy
            value: 86.07021517553794
          - type: max_ap
            value: 74.15520712370555
          - type: max_f1
            value: 68.77723660599845
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.92769821865176
          - type: cos_sim_ap
            value: 85.78879502899773
          - type: cos_sim_f1
            value: 78.14414083990464
          - type: cos_sim_precision
            value: 74.61651607480563
          - type: cos_sim_recall
            value: 82.0218663381583
          - type: dot_accuracy
            value: 84.95750378390964
          - type: dot_ap
            value: 75.80219641857563
          - type: dot_f1
            value: 70.13966179585681
          - type: dot_precision
            value: 65.71140262361251
          - type: dot_recall
            value: 75.20788420080073
          - type: euclidean_accuracy
            value: 88.93546008460433
          - type: euclidean_ap
            value: 85.72056428301667
          - type: euclidean_f1
            value: 78.14387902598124
          - type: euclidean_precision
            value: 75.3376688344172
          - type: euclidean_recall
            value: 81.16723129042192
          - type: manhattan_accuracy
            value: 88.96262661543835
          - type: manhattan_ap
            value: 85.76605136314335
          - type: manhattan_f1
            value: 78.26696165191743
          - type: manhattan_precision
            value: 75.0990659496179
          - type: manhattan_recall
            value: 81.71388974437943
          - type: max_accuracy
            value: 88.96262661543835
          - type: max_ap
            value: 85.78879502899773
          - type: max_f1
            value: 78.26696165191743