OPT-13B - GPTQ

The model published in this repo was quantized to 4bit using AutoGPTQ.

Quantization details

All quantization parameters were taken from GPTQ paper.

GPTQ calibration data consisted of 128 random 2048 token segments from the C4 dataset.

The grouping size used for quantization is equal to 128.

How to use this GPTQ model from Python code

Install the necessary packages

pip install accelerate==0.26.1 datasets==2.16.1 dill==0.3.7 gekko==1.0.6 multiprocess==0.70.15 peft==0.7.1 rouge==1.0.1 sentencepiece==0.1.99
git clone https://github.com/upunaprosk/AutoGPTQ
cd AutoGPTQ
pip install -v .

Recommended transformers version: 4.35.2.

You can then use the following code


from transformers import AutoTokenizer, TextGenerationPipeline,AutoModelForCausalLM
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "iproskurina/opt-13b-gptq-4bit"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(pretrained_model_dir, device="cuda:0", model_basename="model")
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
print(pipeline("auto-gptq is")[0]["generated_text"])

LICENSE

Downloads last month
10
Safetensors
Model size
2.21B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for iproskurina/opt-13b-GPTQ-4bit-g128

Base model

facebook/opt-13b
Quantized
(1)
this model

Collection including iproskurina/opt-13b-GPTQ-4bit-g128