metadata
base_model:
- meta-llama/Llama-3.1-8B-Instruct
license: llama3.1
language:
- gl
metrics:
- bleu
- rouge
model-index:
- name: Llama-3.1-8B-Instruct-Galician
results:
- task:
type: text-generation
dataset:
name: alpaca_data_galician
type: alpaca_data_galician
metrics:
- name: bleu
type: bleu-4
value: 23.13
- name: rouge
type: rouge-l
value: 21.84
pipeline_tag: text-generation
library_name: transformers
widget:
- text: Onde está o concello de Frades?
output:
text: >-
Frades é un concello da provincia da Coruña, pertencente á comarca de
Ordes. Está situado a 15 quilómetros de Santiago de Compostela.
Llama-3.1-8B-Instruct-Galician
This model is a continued pretraining version of meta-llama/Llama-3.1-8B-Instruct on the CorpusNós dataset.
Model Description
- Developed by: UDC Information Retrieval Lab (IRLab)
- Language(s) (NLP): Multilingual, adapted to Galician
- License: llama3.1
- Finetuned from model: meta-llama/Llama-3.1-8B-Instruct
- Repository: Adapting Large Language Models for Underrepresented Languages
- Paper: Coming soon
How to Get Started with the Model
import transformers
import torch
model_id = "irlab-udc/Llama-3.1-8B-Instruct-Galician"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a conversational AI that always responds in Galician."},
{"role": "user", "content": "Cal é a principal vantaxe de usar Scrum?"},
]
outputs = pipeline(messages, max_new_tokens=512)
print(outputs[0]["generated_text"][-1]["content"])
Training Hyperparameters
Parameter | Value |
---|---|
learning_rate | 0.0001 |
train_batch_size | 32 |
eval_batch_size | 1 |
seed | 42 |
distributed_type | multi-GPU |
num_devices | 4 |
gradient_accumulation_steps | 2 |
total_train_batch_size | 256 |
total_eval_batch_size | 4 |
optimizer | Adam with betas=(0.9, 0.999), epsilon=1e-08 |
lr_scheduler_type | cosine |
lr_scheduler_warmup_ratio | 0.1 |
num_epochs | 1.0 |
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0606 | 0.1682 | 900 | 2.0613 |
1.9898 | 0.3363 | 1800 | 1.9929 |
1.9847 | 0.5045 | 2700 | 1.9613 |
1.9577 | 0.6726 | 3600 | 1.9445 |
1.9287 | 0.8408 | 4500 | 1.9368 |
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: 4x NVIDIA A100 SXM4 80 GB (TDP of 400W)
- Hours used: 60
- Cloud Provider: Private infrastructure
- Carbon Emitted: 10.37 Kg. CO₂ eq.
Citation
Coming soon