metadata
license: mit
isy-thl/bge-reranker-base-course-skill-tuned
Overview
This model is a finetuning of BAAI/bge-reranker-base on a German dataset containing positive and negative skill labels and learning outcomes of courses as the query. The model is trained to perform well on calculating relevance scores for learning outcome and esco skill pairs in German language.
Using FlagEmbedding
pip install -U FlagEmbedding
Get relevance scores (higher scores indicate more relevance):
from FlagEmbedding import FlagReranker
reranker = FlagReranker('isy-thl/bge-reranker-base-course-skill-tuned', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
scores = reranker.compute_score([['Einführung in die Arbeitsweise von WordPress', 'WordPress'], ['Einführung in die Arbeitsweise von WordPress', 'Software für Content-Management-Systeme nutzen'], ['Einführung in die Arbeitsweise von WordPress', 'Website-Sichtbarkeit erhöhen']])
print(scores)
The resulting scores can be normalized using a sigmoid function
score = 1 / (1 + math.exp(-score))
Performance
Acknowledgments
Special thanks to the contributors from the Institut für Interaktive Systeme, Kursportal Schleswig-Holstein, Weiterbildung Hessen eV, MyEduLife, and Trainspot for their invaluable support and contributions to the dataset and finetuning process.
Funding: This project was funded by the Federal Ministry of Education and Research.