itopcu's picture
Upload tokenizer
5254710 verified
|
raw
history blame
2.16 kB
metadata
base_model: facebook/roberta-hate-speech-dynabench-r4-target
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: facebook-hate-speech-fine-tuned
    results: []

facebook-hate-speech-fine-tuned

This model is a fine-tuned version of facebook/roberta-hate-speech-dynabench-r4-target on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1943
  • Accuracy: 0.9636
  • Precision Macro: 0.8675
  • Recall Macro: 0.8731
  • F1 Macro: 0.8703
  • Precision Micro: 0.9636
  • Recall Micro: 0.9636
  • F1 Micro: 0.9636

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro Precision Micro Recall Micro F1 Micro
0.2628 1.0 199 0.1203 0.9585 0.8840 0.7939 0.8318 0.9585 0.9585 0.9585
0.071 2.0 398 0.1640 0.9673 0.9144 0.8369 0.8709 0.9673 0.9673 0.9673
0.1483 3.0 597 0.1943 0.9636 0.8675 0.8731 0.8703 0.9636 0.9636 0.9636

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1