Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,81 +1,26 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
license: mit
|
4 |
-
base_model: dbmdz/bert-base-turkish-128k-cased
|
5 |
-
tags:
|
6 |
-
- generated_from_trainer
|
7 |
-
metrics:
|
8 |
-
- accuracy
|
9 |
-
model-index:
|
10 |
-
- name: kubler-ross
|
11 |
-
results: []
|
12 |
-
---
|
13 |
|
14 |
-
|
15 |
-
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 1.1257
|
22 |
-
- Accuracy: 0.5567
|
23 |
-
- Precision Macro: 0.2228
|
24 |
-
- Recall Macro: 0.2807
|
25 |
-
- F1 Macro: 0.2482
|
26 |
-
- Precision Micro: 0.5567
|
27 |
-
- Recall Micro: 0.5567
|
28 |
-
- F1 Micro: 0.5567
|
29 |
-
- Mcc: 0.2773
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
## Training and evaluation data
|
40 |
-
|
41 |
-
More information needed
|
42 |
-
|
43 |
-
## Training procedure
|
44 |
-
|
45 |
-
### Training hyperparameters
|
46 |
-
|
47 |
-
The following hyperparameters were used during training:
|
48 |
-
- learning_rate: 1e-05
|
49 |
-
- train_batch_size: 16
|
50 |
-
- eval_batch_size: 16
|
51 |
-
- seed: 42
|
52 |
-
- gradient_accumulation_steps: 2
|
53 |
-
- total_train_batch_size: 32
|
54 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
-
- lr_scheduler_type: linear
|
56 |
-
- lr_scheduler_warmup_steps: 500
|
57 |
-
- num_epochs: 10
|
58 |
-
- mixed_precision_training: Native AMP
|
59 |
-
|
60 |
-
### Training results
|
61 |
-
|
62 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Mcc |
|
63 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:-------:|
|
64 |
-
| No log | 1.0 | 44 | 1.6846 | 0.1133 | 0.1320 | 0.2258 | 0.0722 | 0.1133 | 0.1133 | 0.1133 | 0.0093 |
|
65 |
-
| 1.7493 | 2.0 | 88 | 1.5106 | 0.3067 | 0.1782 | 0.2023 | 0.1790 | 0.3067 | 0.3067 | 0.3067 | -0.0303 |
|
66 |
-
| 1.5805 | 3.0 | 132 | 1.3827 | 0.3867 | 0.1539 | 0.1919 | 0.1657 | 0.3867 | 0.3867 | 0.3867 | -0.0240 |
|
67 |
-
| 1.4186 | 4.0 | 176 | 1.2970 | 0.4133 | 0.1660 | 0.2051 | 0.1761 | 0.4133 | 0.4133 | 0.4133 | 0.0183 |
|
68 |
-
| 1.3134 | 5.0 | 220 | 1.2696 | 0.4067 | 0.1592 | 0.1985 | 0.1451 | 0.4067 | 0.4067 | 0.4067 | -0.0092 |
|
69 |
-
| 1.2891 | 6.0 | 264 | 1.2582 | 0.4567 | 0.1828 | 0.2263 | 0.1933 | 0.4567 | 0.4567 | 0.4567 | 0.1016 |
|
70 |
-
| 1.2485 | 7.0 | 308 | 1.2519 | 0.42 | 0.1674 | 0.2106 | 0.1860 | 0.42 | 0.42 | 0.42 | 0.0364 |
|
71 |
-
| 1.2244 | 8.0 | 352 | 1.2252 | 0.4933 | 0.1967 | 0.2475 | 0.2187 | 0.4933 | 0.4933 | 0.4933 | 0.1649 |
|
72 |
-
| 1.2244 | 9.0 | 396 | 1.2089 | 0.4933 | 0.2054 | 0.2510 | 0.2192 | 0.4933 | 0.4933 | 0.4933 | 0.1844 |
|
73 |
-
| 1.1633 | 10.0 | 440 | 1.1257 | 0.5567 | 0.2228 | 0.2807 | 0.2482 | 0.5567 | 0.5567 | 0.5567 | 0.2773 |
|
74 |
-
|
75 |
-
|
76 |
-
### Framework versions
|
77 |
-
|
78 |
-
- Transformers 4.44.2
|
79 |
-
- Pytorch 2.4.1+cu121
|
80 |
-
- Datasets 3.0.1
|
81 |
-
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
# Kubler-Ross Grief Stage Classification
|
|
|
3 |
|
4 |
+
This model is a fine-tuned version of `dbmdz/bert-base-turkish-128k-cased` on the Kübler-Ross grief stages dataset.
|
5 |
|
6 |
+
It classifies text into one of five stages of grief: denial, anger, bargaining, depression, acceptance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
### Results on the Test Set:
|
9 |
|
10 |
+
| Metric | Value |
|
11 |
+
|-------------------|---------|
|
12 |
+
| **Accuracy** | 0.5200 |
|
13 |
+
| **Precision Macro**| 0.2089 |
|
14 |
+
| **Recall Macro** | 0.2618 |
|
15 |
+
| **F1 Macro** | 0.2315 |
|
16 |
+
| **Precision Micro**| 0.5200 |
|
17 |
+
| **Recall Micro** | 0.5200 |
|
18 |
+
| **F1 Micro** | 0.5200 |
|
19 |
+
| **MCC** | 0.2140 |
|
20 |
|
21 |
+
### Training Procedure
|
22 |
+
- **Learning Rate**: 1e-5
|
23 |
+
- **Batch Size**: 16
|
24 |
+
- **Epochs**: 10
|
25 |
|
26 |
+
This model was trained on a balanced dataset of texts categorized into the five stages of grief.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|