itopcu commited on
Commit
c426af9
·
verified ·
1 Parent(s): 98cf976

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +19 -74
README.md CHANGED
@@ -1,81 +1,26 @@
1
- ---
2
- library_name: transformers
3
- license: mit
4
- base_model: dbmdz/bert-base-turkish-128k-cased
5
- tags:
6
- - generated_from_trainer
7
- metrics:
8
- - accuracy
9
- model-index:
10
- - name: kubler-ross
11
- results: []
12
- ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # kubler-ross
18
 
19
- This model is a fine-tuned version of [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) on the None dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 1.1257
22
- - Accuracy: 0.5567
23
- - Precision Macro: 0.2228
24
- - Recall Macro: 0.2807
25
- - F1 Macro: 0.2482
26
- - Precision Micro: 0.5567
27
- - Recall Micro: 0.5567
28
- - F1 Micro: 0.5567
29
- - Mcc: 0.2773
30
 
31
- ## Model description
32
 
33
- More information needed
 
 
 
 
 
 
 
 
 
34
 
35
- ## Intended uses & limitations
 
 
 
36
 
37
- More information needed
38
-
39
- ## Training and evaluation data
40
-
41
- More information needed
42
-
43
- ## Training procedure
44
-
45
- ### Training hyperparameters
46
-
47
- The following hyperparameters were used during training:
48
- - learning_rate: 1e-05
49
- - train_batch_size: 16
50
- - eval_batch_size: 16
51
- - seed: 42
52
- - gradient_accumulation_steps: 2
53
- - total_train_batch_size: 32
54
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
- - lr_scheduler_type: linear
56
- - lr_scheduler_warmup_steps: 500
57
- - num_epochs: 10
58
- - mixed_precision_training: Native AMP
59
-
60
- ### Training results
61
-
62
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Mcc |
63
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:-------:|
64
- | No log | 1.0 | 44 | 1.6846 | 0.1133 | 0.1320 | 0.2258 | 0.0722 | 0.1133 | 0.1133 | 0.1133 | 0.0093 |
65
- | 1.7493 | 2.0 | 88 | 1.5106 | 0.3067 | 0.1782 | 0.2023 | 0.1790 | 0.3067 | 0.3067 | 0.3067 | -0.0303 |
66
- | 1.5805 | 3.0 | 132 | 1.3827 | 0.3867 | 0.1539 | 0.1919 | 0.1657 | 0.3867 | 0.3867 | 0.3867 | -0.0240 |
67
- | 1.4186 | 4.0 | 176 | 1.2970 | 0.4133 | 0.1660 | 0.2051 | 0.1761 | 0.4133 | 0.4133 | 0.4133 | 0.0183 |
68
- | 1.3134 | 5.0 | 220 | 1.2696 | 0.4067 | 0.1592 | 0.1985 | 0.1451 | 0.4067 | 0.4067 | 0.4067 | -0.0092 |
69
- | 1.2891 | 6.0 | 264 | 1.2582 | 0.4567 | 0.1828 | 0.2263 | 0.1933 | 0.4567 | 0.4567 | 0.4567 | 0.1016 |
70
- | 1.2485 | 7.0 | 308 | 1.2519 | 0.42 | 0.1674 | 0.2106 | 0.1860 | 0.42 | 0.42 | 0.42 | 0.0364 |
71
- | 1.2244 | 8.0 | 352 | 1.2252 | 0.4933 | 0.1967 | 0.2475 | 0.2187 | 0.4933 | 0.4933 | 0.4933 | 0.1649 |
72
- | 1.2244 | 9.0 | 396 | 1.2089 | 0.4933 | 0.2054 | 0.2510 | 0.2192 | 0.4933 | 0.4933 | 0.4933 | 0.1844 |
73
- | 1.1633 | 10.0 | 440 | 1.1257 | 0.5567 | 0.2228 | 0.2807 | 0.2482 | 0.5567 | 0.5567 | 0.5567 | 0.2773 |
74
-
75
-
76
- ### Framework versions
77
-
78
- - Transformers 4.44.2
79
- - Pytorch 2.4.1+cu121
80
- - Datasets 3.0.1
81
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ # Kubler-Ross Grief Stage Classification
 
3
 
4
+ This model is a fine-tuned version of `dbmdz/bert-base-turkish-128k-cased` on the Kübler-Ross grief stages dataset.
5
 
6
+ It classifies text into one of five stages of grief: denial, anger, bargaining, depression, acceptance.
 
 
 
 
 
 
 
 
 
 
7
 
8
+ ### Results on the Test Set:
9
 
10
+ | Metric | Value |
11
+ |-------------------|---------|
12
+ | **Accuracy** | 0.5200 |
13
+ | **Precision Macro**| 0.2089 |
14
+ | **Recall Macro** | 0.2618 |
15
+ | **F1 Macro** | 0.2315 |
16
+ | **Precision Micro**| 0.5200 |
17
+ | **Recall Micro** | 0.5200 |
18
+ | **F1 Micro** | 0.5200 |
19
+ | **MCC** | 0.2140 |
20
 
21
+ ### Training Procedure
22
+ - **Learning Rate**: 1e-5
23
+ - **Batch Size**: 16
24
+ - **Epochs**: 10
25
 
26
+ This model was trained on a balanced dataset of texts categorized into the five stages of grief.