metadata
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: students_scores_model
results: []
students_scores_model
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9662
- F1: 0.6266
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 282 | 1.0224 | 0.5288 |
1.0295 | 2.0 | 564 | 1.0153 | 0.5571 |
1.0295 | 3.0 | 846 | 0.8929 | 0.6222 |
0.8387 | 4.0 | 1128 | 0.8547 | 0.6331 |
0.8387 | 5.0 | 1410 | 0.8895 | 0.6200 |
0.7514 | 6.0 | 1692 | 0.8920 | 0.6184 |
0.7514 | 7.0 | 1974 | 0.9353 | 0.6229 |
0.6815 | 8.0 | 2256 | 0.9303 | 0.6287 |
0.6083 | 9.0 | 2538 | 0.9879 | 0.6186 |
0.6083 | 10.0 | 2820 | 0.9662 | 0.6266 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.21.0