jadechoghari commited on
Commit
ac587a6
·
verified ·
1 Parent(s): 73d385f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -135
README.md CHANGED
@@ -3,159 +3,49 @@ library_name: transformers
3
  pipeline_tag: image-text-to-text
4
  ---
5
 
6
- ## How to Use the *ferret-gemma* Model
 
 
7
 
8
- Please download and save `builder.py`, `conversation.py` locally.
9
 
10
- ```python
11
- import torch
12
- from PIL import Image
13
- from conversation import conv_templates
14
- from builder import load_pretrained_model # Assuming this is your custom model loader
15
- from functools import partial
16
- import numpy as np
17
-
18
- # define the task categories
19
- box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
20
- box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
21
- no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
22
-
23
- # function to generate the mask
24
- def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
25
- """
26
- Generates a region mask based on provided coordinates.
27
- Handles both point and box input.
28
- """
29
- if mask is not None:
30
- assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
31
- coor_mask = np.zeros((raw_w, raw_h))
32
-
33
- # if it's a point (2 coordinates)
34
- if len(coor) == 2:
35
- span = 5 # Define the span for the point
36
- x_min = max(0, coor[0] - span)
37
- x_max = min(raw_w, coor[0] + span + 1)
38
- y_min = max(0, coor[1] - span)
39
- y_max = min(raw_h, coor[1] + span + 1)
40
- coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
41
- assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
42
 
43
- # if it's a box (4 coordinates)
44
- elif len(coor) == 4:
45
- coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
46
- if mask is not None:
47
- coor_mask = coor_mask * mask
48
 
49
- # Convert to torch tensor and ensure it contains non-zero values
50
- coor_mask = torch.from_numpy(coor_mask)
51
- assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("
52
-
53
- return coor_mask
54
- ```
55
- ### Now, define the infer function
56
- ```python
57
- def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct"):
58
- img = Image.open(image_path).convert('RGB')
59
-
60
- # this loads the model, image processor and tokenizer
61
- tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
62
-
63
- # define the image size (e.g., 224x224 or 336x336)
64
- image_size = {"height": 336, "width": 336}
65
-
66
- # process the image
67
- image_tensor = image_processor.preprocess(
68
- img,
69
- return_tensors='pt',
70
- do_resize=True,
71
- do_center_crop=False,
72
- size=(image_size['height'], image_size['width'])
73
- )['pixel_values'][0].unsqueeze(0)
74
-
75
- image_tensor = image_tensor.half().cuda()
76
-
77
- # generate the prompt per template requirement
78
- conv = conv_templates[conv_mode].copy()
79
- conv.append_message(conv.roles[0], prompt)
80
- conv.append_message(conv.roles[1], None)
81
- prompt_input = conv.get_prompt()
82
-
83
- # tokenize prompt
84
- input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
85
-
86
- # region mask logic (if region is provided)
87
- region_masks = None
88
- if region is not None:
89
- raw_w, raw_h = img.size
90
- region_masks = generate_mask_for_feature(region, raw_w, raw_h).unsqueeze(0).cuda().half()
91
- region_masks = [[region_masks]] # Wrap the mask in lists as expected by the model
92
-
93
- # generate model output
94
- with torch.inference_mode():
95
- # Use region_masks in model's forward call
96
- model.orig_forward = model.forward
97
- model.forward = partial(
98
- model.orig_forward,
99
- region_masks=region_masks
100
- )
101
- output_ids = model.generate(
102
- input_ids,
103
- images=image_tensor,
104
- max_new_tokens=1024,
105
- num_beams=1,
106
- region_masks=region_masks, # pass the region mask to the model
107
- image_sizes=[img.size]
108
- )
109
- model.forward = model.orig_forward
110
-
111
- # we decode the output
112
- output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
113
- return output_text.strip()
114
- ```
115
-
116
- # We also define a task-specific inference function
117
- ```python
118
- def infer_ui_task(image_path, prompt, model_path, task, region=None):
119
- """
120
- Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
121
- """
122
- if task in box_in_tasks and region is None:
123
- raise ValueError(f"Task {task} requires a bounding box region.")
124
-
125
- if task in box_in_tasks:
126
- print(f"Processing {task} with bounding box region.")
127
- return infer_single_prompt(image_path, prompt, model_path, region)
128
-
129
- elif task in box_out_tasks:
130
- print(f"Processing {task} without bounding box region.")
131
- return infer_single_prompt(image_path, prompt, model_path)
132
-
133
- elif task in no_box_tasks:
134
- print(f"Processing {task} without image or bounding box.")
135
- return infer_single_prompt(image_path, prompt, model_path)
136
-
137
- else:
138
- raise ValueError(f"Unknown task type: {task}")
139
  ```
140
 
141
  ### Usage:
142
  ```python
143
- # Example image and model paths
 
144
  image_path = 'image.jpg'
145
- model_path = 'jadechoghari/ferret-gemma'
 
146
 
147
- # Task requiring bounding box
148
- task = 'widgetcaptions'
 
 
149
  region = (50, 50, 200, 200)
150
  result = infer_ui_task(image_path, "Describe the contents of the box.", model_path, task, region=region)
151
  print("Result:", result)
 
152
 
153
- # Task not requiring bounding box
 
 
154
  task = 'conversation_interaction'
155
  result = infer_ui_task(image_path, "How do I navigate to the Games tab?", model_path, task)
156
  print("Result:", result)
 
157
 
158
- # Task with no image processing
 
 
159
  task = 'detailed_description'
160
  result = infer_ui_task(image_path, "Please describe the screen in detail.", model_path, task)
161
  print("Result:", result)
 
3
  pipeline_tag: image-text-to-text
4
  ---
5
 
6
+ Ferret-UI is the first UI-centric multimodal large language model (MLLM) designed for referring, grounding, and reasoning tasks.
7
+ Built on Gemma-2B and Llama-3-8B, it is capable of executing complex UI tasks.
8
+ This is the Gemma-2B version of ferret-ui. It follows from [this paper](https://arxiv.org/pdf/2404.05719) by Apple.
9
 
 
10
 
11
+ ## How to Use the *Ferret-UI-Gemma2b* Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ You will need first to download `builder.py`, `conversation.py`, and `inference.py` locally.
 
 
 
 
14
 
15
+ ```bash
16
+ wget https://huggingface.co/jadechoghari/ferret-gemma/raw/main/conversation.py
17
+ wget https://huggingface.co/jadechoghari/ferret-gemma/raw/main/builder.py
18
+ wget https://huggingface.co/jadechoghari/ferret-gemma/raw/main/inference.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ```
20
 
21
  ### Usage:
22
  ```python
23
+ from inference import infer_ui_task
24
+ # Pass an image and the online model path
25
  image_path = 'image.jpg'
26
+ model_path = 'jadechoghari/Ferret-UI-Gemma2b'
27
+ ```
28
 
29
+ ### Task requiring bounding box
30
+ Choose a task from ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
31
+ ```python
32
+ task = 'widgetcaptions'
33
  region = (50, 50, 200, 200)
34
  result = infer_ui_task(image_path, "Describe the contents of the box.", model_path, task, region=region)
35
  print("Result:", result)
36
+ ```
37
 
38
+ ### Task not requiring bounding box
39
+ Choose a task from ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
40
+ ```python
41
  task = 'conversation_interaction'
42
  result = infer_ui_task(image_path, "How do I navigate to the Games tab?", model_path, task)
43
  print("Result:", result)
44
+ ```
45
 
46
+ ### Task with no image processing
47
+ Choose a task from ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
48
+ ```python
49
  task = 'detailed_description'
50
  result = infer_ui_task(image_path, "Please describe the screen in detail.", model_path, task)
51
  print("Result:", result)