Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9940
  • Accuracy: {'accuracy': 0.89}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4042 {'accuracy': 0.88}
0.4203 2.0 500 0.5564 {'accuracy': 0.854}
0.4203 3.0 750 0.5978 {'accuracy': 0.877}
0.1975 4.0 1000 0.6033 {'accuracy': 0.893}
0.1975 5.0 1250 0.8795 {'accuracy': 0.891}
0.0729 6.0 1500 0.8636 {'accuracy': 0.892}
0.0729 7.0 1750 0.8764 {'accuracy': 0.889}
0.0148 8.0 2000 0.9412 {'accuracy': 0.896}
0.0148 9.0 2250 0.9611 {'accuracy': 0.891}
0.0138 10.0 2500 0.9940 {'accuracy': 0.89}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for jai2992/distilbert-base-uncased-lora-text-classification

Adapter
(191)
this model