File size: 13,645 Bytes
ebb724f |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ccae0942290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ccae0942320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ccae09423b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ccae0942440>", "_build": "<function ActorCriticPolicy._build at 0x7ccae09424d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ccae0942560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ccae09425f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ccae0942680>", "_predict": "<function ActorCriticPolicy._predict at 0x7ccae0942710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ccae09427a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ccae0942830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ccae09428c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ccae10e5f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702441346811881094, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2kfLtfCkY+8KxvvQSQmr69e3i9frp+PAAAAAAAAAAAZncFvt+qiT+dJzG+yy3+vrGhkr6zKeI9AAAAAAAAAADNL4E95UhuPsivC776Lq2+/YTmvcFbCz0AAAAAAAAAADN79rwCI0Y+v4s6PvB6lb6adQU+qX7FvAAAAAAAAAAAmhFHu/YYcrqQHHY1AgZwMKBjGLvar7m0AACAPwAAgD/TM0a+XvceP/IJ2z7pvbe+TFvIPSWfQT4AAAAAAAAAAM3kTTwK7S+7L+aLOztNizwFBz888INwvQAAgD8AAIA/Zhf0PEWpqTxrmf47EcKcvhtsZTzambM8AAAAAAAAAABml0y9w4xjvIxior12k4e9jGylPSEQAT8AAIA/AACAP1MxAz5acxI/nX0MvsAz3L5pfRw9oi/kOgAAAAAAAAAAgML9Pai0xj50PBe+EAGsvoAILj2+aAC+AAAAAAAAAAAzsxa8bwQKPfWSmL27baO+AKFvvXzbND0AAAAAAAAAAACLTb3hFLK6uuIduencFbStjP050IU0OAAAgD8AAIA/mm2Zu8m/Vz5QB+y9Nk6+vmccg72C9EM7AAAAAAAAAADaHRO+55U7P8/dlb3SeOy+FnGYvkPLDD0AAAAAAAAAAE1Mlj1CrDc/qBslPJ3m3L77Xu09egScvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFD1mjCYTmMAWyUS+qMAXSUR0C1r/V18stkdX2UKGgGR0ByEjmEGqxUaAdL3GgIR0C1sAoVmBe5dX2UKGgGR0BxyaEJ0GNaaAdL5WgIR0C1sBCYoiLVdX2UKGgGR0BxDGUeMhouaAdL+2gIR0C1sCKD0163dX2UKGgGR0BxKX8FY+0PaAdL8GgIR0C1sCbtzCDVdX2UKGgGR0BybUt5D7ZWaAdL92gIR0C1sKaF/QSjdX2UKGgGR0ByF5AWznieaAdL3GgIR0C1sLFMAWBSdX2UKGgGR0BwmD6P8yeqaAdL5GgIR0C1sLNbor4GdX2UKGgGR0Bt3GTNdJJ5aAdL3GgIR0C1sL4p2ECedX2UKGgGR0Byn4CxNZeSaAdNBwFoCEdAtbDabBoEjnV9lChoBkdAcp2f+CK77WgHS/ZoCEdAtbDx6OYIB3V9lChoBkdAcQIsBQvYe2gHS+hoCEdAtbEc1Muez3V9lChoBkdAc1YfthNM5GgHS+xoCEdAtbEhuBMBZXV9lChoBkdAb8gGIKtxMmgHS+VoCEdAtbE3u6VdHHV9lChoBkdAcmijzqbBoGgHTQwBaAhHQLWxSBo24ut1fZQoaAZHQHLYW5QP7N1oB0vfaAhHQLWxZZy+6Ah1fZQoaAZHQHHUOG9HtnhoB0v8aAhHQLWxZ/PgNw11fZQoaAZHQHEYbutwJgNoB00AAWgIR0C1sXsUuctodX2UKGgGR0BxdFFtsN2DaAdL+2gIR0C1sYo9HMEBdX2UKGgGR0BxnnOt4iX6aAdL6mgIR0C1sY37+DODdX2UKGgGR0BxoORr8BMjaAdL9WgIR0C1saEhA4XGdX2UKGgGR0BwZ5jtoi9qaAdL1GgIR0C1sewpWmxddX2UKGgGR0BuRkPxx1gZaAdL0mgIR0C1sfL4FiazdX2UKGgGR0Bv81kWhysCaAdL1GgIR0C1sfewkgOjdX2UKGgGR0BxQy2v0RODaAdL5mgIR0C1sh1xn3+NdX2UKGgGR0BxEt/G2kSFaAdL4mgIR0C1sjTUd7v5dX2UKGgGR0ByyyIKtxMnaAdL92gIR0C1snMhHLA6dX2UKGgGR0BzC/zTWoWIaAdL6WgIR0C1souDaoMsdX2UKGgGR0Bwa6ipNsWPaAdL62gIR0C1soqScLBsdX2UKGgGR0BxAtDMNc4YaAdL7GgIR0C1sqXbdrO8dX2UKGgGR0By+O5I6KceaAdL7GgIR0C1srgFLWZrdX2UKGgGR0Bze9v2oNutaAdLyGgIR0C1vFMMmWt2dX2UKGgGR0BvMcf3evZAaAdL4GgIR0C1vFXnlnyvdX2UKGgGR0Bx43RJEpiJaAdL7GgIR0C1vGPGMn7YdX2UKGgGR0BzKjzMA3kxaAdL7WgIR0C1vHWECeVcdX2UKGgGR0BwgbZRKpT/aAdL3mgIR0C1vIUPQOWjdX2UKGgGR0BxB8t8NQTFaAdNAAFoCEdAtbyhA4XGfnV9lChoBkdAcx8b0OEuhGgHS9loCEdAtbzSaqjrRnV9lChoBkdAcb8wuuieumgHS/VoCEdAtbzyiO/+KnV9lChoBkdAcq0+LFXJYGgHS/RoCEdAtbz3xb0OE3V9lChoBkdAcQFLgn+hoWgHS9hoCEdAtbz34h2W6nV9lChoBkdAccznyup0fmgHTQIBaAhHQLW9SR/ViF11fZQoaAZHQHAR8RlHz6JoB0vhaAhHQLW9TWSEDhd1fZQoaAZHQG9dA2Ifr8loB0vyaAhHQLW9g73fygB1fZQoaAZHQHNYsFyJbdJoB0vKaAhHQLW9k1rqMWJ1fZQoaAZHQG/HVFH8TBZoB0vWaAhHQLW9ljm0VrR1fZQoaAZHQHAd+jdpItloB0voaAhHQLW9pWAf+0h1fZQoaAZHQHHKaKk2xY9oB0v2aAhHQLW9qeGwiaB1fZQoaAZHQHH50xdpqRFoB00LAWgIR0C1va+9Jz1cdX2UKGgGR0BwnBWkrPMTaAdL8WgIR0C1vb7Gecx1dX2UKGgGR0BwV9S/CZWraAdL4WgIR0C1vc00iyIIdX2UKGgGR0BubLDjzZpSaAdL2GgIR0C1vdCcCo0idX2UKGgGR0BxH0QwsXizaAdLz2gIR0C1vdzq8lHCdX2UKGgGR0BzDxopQUHqaAdL52gIR0C1vibLhaTwdX2UKGgGR0BwxPgdfb9IaAdL2mgIR0C1vjHhfjS5dX2UKGgGR0BxQYo5PuXvaAdL9GgIR0C1vl5LuhK2dX2UKGgGR0BxhUVpKzzFaAdL0WgIR0C1voKs6q82dX2UKGgGR0BzfQ3o9s7/aAdNDAFoCEdAtb6IefZmI3V9lChoBkdAchMXcxj8UGgHS9BoCEdAtb7Zf9gndHV9lChoBkdAcPS9xZMcqGgHS91oCEdAtb7g67ulXXV9lChoBkdAcZnCLuQZGmgHTQUBaAhHQLW+4myxA0N1fZQoaAZHQHJ8FVtGd7RoB0vsaAhHQLW+7N9H+ZR1fZQoaAZHQHADQlv60ppoB0vfaAhHQLW++UgB91F1fZQoaAZHQHL7OCK77KtoB0vaaAhHQLW+99fkWAR1fZQoaAZHQHAVv/3nIQxoB0voaAhHQLW/GhM8HOd1fZQoaAZHQHNnnCXQdCFoB0vhaAhHQLW/I4wRGtp1fZQoaAZHQHLfsfeUILRoB00HAWgIR0C1vyMDKYAsdX2UKGgGR0BxirvYvnKXaAdL42gIR0C1vzTIeYD1dX2UKGgGR0ByjjyRSxZ/aAdL+GgIR0C1vz7xusLfdX2UKGgGR0BxxYhGH58CaAdL5GgIR0C1v4mfwqiHdX2UKGgGR0Bw///Ot4iYaAdL+WgIR0C1v7hpL26DdX2UKGgGR0BwLU/9pAUtaAdL6WgIR0C1v84q5LAYdX2UKGgGR0BzIdNCZ4OdaAdL8GgIR0C1v/xzV+ZxdX2UKGgGR0BtiGTLW7OFaAdL72gIR0C1wACqdYnwdX2UKGgGR0Bv+fNcGC7LaAdL32gIR0C1wDRyXD3udX2UKGgGR0BxOvsu3+dcaAdL1GgIR0C1wD/MGHHndX2UKGgGR0BylNQwblzVaAdL52gIR0C1wEppN9H+dX2UKGgGR0ByA2ylenhsaAdL6WgIR0C1wE9oFmnPdX2UKGgGR0ByVszwc5sCaAdL5GgIR0C1wFzp5eJIdX2UKGgGR0Bwk5eu3c59aAdL72gIR0C1wGMyi22HdX2UKGgGR0ByR8FNcnmaaAdL0mgIR0C1wGZFb3XadX2UKGgGR0BxZMuM+/xlaAdL4mgIR0C1wIa02LpBdX2UKGgGR0BzK9kK/mDEaAdL7WgIR0C1wK3MMZxadX2UKGgGR0BxwZle4TbnaAdL6WgIR0C1wLLVSXMRdX2UKGgGR0ByWSukk8ifaAdNIgFoCEdAtcDnUF0PpnV9lChoBkdAcO3ZydWhiGgHS/VoCEdAtcERUVBUrHV9lChoBkdAcF+vcrRSg2gHS+toCEdAtcEua6STyXV9lChoBkdAc+tMmnfl62gHS/NoCEdAtcFRRqGlAXV9lChoBkdAPKaur6tT1mgHS6loCEdAtcFTfl6qsHV9lChoBkdAcVFoWHk92WgHS+hoCEdAtcFzCiyprHV9lChoBkdAcREjpLVWj2gHS+5oCEdAtcF5TuOS4nV9lChoBkdAchfqhlDneWgHS9loCEdAtcGgNEw353V9lChoBkdAcEcBFuvU0GgHS+ZoCEdAtcGieRPoFHV9lChoBkdAb2sTewcHW2gHS9VoCEdAtcGrteD3/XV9lChoBkdAcMaVS4vvjWgHS99oCEdAtcHCJ0nw5XV9lChoBkdAccYleF+NLmgHS95oCEdAtcHEGPgeinV9lChoBkdAcVcMAWBSUGgHS9JoCEdAtcHRIy0rsnV9lChoBkdAcpjWykbgj2gHTQABaAhHQLXB0vxYq5N1fZQoaAZHQHLFLQswtapoB0vcaAhHQLXB/4Nqgyx1fZQoaAZHQHDAcNUfgaZoB0vraAhHQLXCGRvFWGR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 920, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |