jayur commited on
Commit
ebb724f
·
1 Parent(s): f47845c

Upload PPO LunarLander-v2(jayur:v2) trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 262.86 +/- 25.17
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 285.22 +/- 21.93
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e29ead1caf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e29ead1cb80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e29ead1cc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e29ead1cca0>", "_build": "<function ActorCriticPolicy._build at 0x7e29ead1cd30>", "forward": "<function ActorCriticPolicy.forward at 0x7e29ead1cdc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e29ead1ce50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e29ead1cee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e29ead1cf70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e29ead1d000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e29ead1d090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e29ead1d120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e29eaeb6240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702379820070170163, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADHmDz41Is/ZYxXvfDpur4Q5oM9lndGPQAAAAAAAAAAGuZdvUn0Vz4SkoI8UZ1xvrsj7ry6P548AAAAAAAAAAAAhq68uMvlPX43WzpCKnO+QyKYPOJnXD0AAAAAAAAAAJr3X7xc1ju8Hgvzu1FnET2DAak9AJnovQAAgD8AAIA/+HiSvkzLZz+qurC8EdEAv9Ut2b5e3Ro+AAAAAAAAAABmrAk8FNC1uhIfWjOiInQuP2vquThvsLMAAIA/AACAP9qKrT3YN90+k0GJvSbxnb474C29iKN0PAAAAAAAAAAAZifIPApoAjzu34g8IANOvpcs57yVpMc9AAAAAAAAAABmYoc7n4fOu5bQW7uG4Y08kUIdvQPRbz0AAIA/AACAP+bZZj3EHJs/kHFIPqP7yL6TNBg+bMWcPQAAAAAAAAAAgAVSvUQeCj54YGE9LygavhGlPzsjbPm8AAAAAAAAAAAzwMK8SI+juhjFLDMcevQuouVlukolw7MAAIA/AACAP80e9jxpn4M/IqobvOOCtL461aU9HIkbPQAAAAAAAAAAZhyWvTfEmD/+pEW+cZD1vkSdq72TraW7AAAAAAAAAADaslM+2JGZPxs6/T7k+tq+pyrYPoAQXj4AAAAAAAAAABpjTz28jbE/fvlsPgD1iL5RS5c9bsv8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC9d3bEgnuMAWyUTSYBjAF0lEdAkOjaz/p+t3V9lChoBkdActpaa1Cw8mgHTQoBaAhHQJDqIbvPTod1fZQoaAZHQHGnFPva11JoB003AWgIR0CQ6vtGus90dX2UKGgGR0ByTzQZ4wAVaAdNHQFoCEdAkOuGQOnVG3V9lChoBkdAcUoqrzXjEWgHTTMBaAhHQJDrpsoDxLF1fZQoaAZHQHHUpwwTM7loB0v3aAhHQJDr2nqFAVx1fZQoaAZHQHAJKvRqoIhoB00vAWgIR0CQ6+GUwBYFdX2UKGgGR0BxAcqH446waAdNFwFoCEdAkOxHY6GQCHV9lChoBkdAKhlHrhR64WgHS9FoCEdAkOyyoKlYU3V9lChoBkdAciJNy5qdpmgHTSwBaAhHQJDtku+RHPN1fZQoaAZHQHEjaG5+YtxoB01JAWgIR0CQ7a9FnZkDdX2UKGgGR0BvzGYOUdJbaAdNEgFoCEdAkO3poK2KEXV9lChoBkdAb8IQumJm/WgHTSkBaAhHQJDt9zijtXx1fZQoaAZHQHFWrQ1JlJ9oB003AWgIR0CQ73xIJ7b+dX2UKGgGR0Bxgz2RJVbSaAdNKAFoCEdAkPCSxmkFfXV9lChoBkdAbfN2+PBBRmgHTUEBaAhHQJDxm6jFhod1fZQoaAZHQHKUAxFiKBNoB00lAWgIR0CQ8bO32EkCdX2UKGgGR0BxHklkYoAoaAdNKAFoCEdAkPO31BdD6XV9lChoBkdActJyNGViWmgHTQABaAhHQJD0Ak5ZKWd1fZQoaAZHQHANanR9gF5oB00eAWgIR0CQ9dTNdJJ5dX2UKGgGR0BwPqKDTSb6aAdNOwFoCEdAkPXiGnGbTnV9lChoBkdAcYWndweeWmgHS/5oCEdAkPXtAPd2xXV9lChoBkdAb2VVGTcIq2gHTTwBaAhHQJD2nMJQcgh1fZQoaAZHQHFNpRoAXEZoB00zAWgIR0CQ9rRjz7MxdX2UKGgGR0BweVlar3j/aAdNMwFoCEdAkPdcHv+fiHV9lChoBkdAcLTDArQPZ2gHTQ0BaAhHQJD4TEBKcut1fZQoaAZHQHHHqur6tT1oB00aAWgIR0CQ+LY3eenRdX2UKGgGR0BwmKKuSwGGaAdNMQFoCEdAkPkpZSvTw3V9lChoBkdAb2adVea8YmgHTS4BaAhHQJD5MfxMFll1fZQoaAZHQHFb3/YJ3PloB00QAWgIR0CQ+jXTmW+odX2UKGgGR0ANBtWMju8caAdL5GgIR0CQ+q7UG3WndX2UKGgGR0Bx8A1P3ztkaAdNGgFoCEdAkPuJpJwsG3V9lChoBkdAclAeS0Sh8WgHS/NoCEdAkP54hyKekHV9lChoBkdAT+0UKzAvc2gHS85oCEdAkP6BLTQVsXV9lChoBkdAcWvfx+az/2gHTSIBaAhHQJD+xM495hV1fZQoaAZHQHE17D/EOy5oB003AWgIR0CQ/zvttyggdX2UKGgGR0BuOLch1TzeaAdNDgFoCEdAkP9lX/5tWXV9lChoBkdAcNuRQ79ycWgHTSMBaAhHQJEAFP9DQZ51fZQoaAZHQHIoJm29cr1oB00fAWgIR0CRAIjgydnTdX2UKGgGR0Bx4TM0P6KtaAdL/mgIR0CRASi0OVgQdX2UKGgGR0Bv98vf0mMPaAdNTQFoCEdAkQHkOI68x3V9lChoBkdAcMCnRb8m8mgHTSkBaAhHQJECKquKXOZ1fZQoaAZHQHGhwOavzOJoB00lAWgIR0CRAr0HQhOhdX2UKGgGR0Byb6AnUlRhaAdNPQFoCEdAkQNtPYWcjXV9lChoBkdAcRT0MgEEDGgHTSsBaAhHQJED64EwFkh1fZQoaAZHQHBtpMg2ZRdoB00gAWgIR0CRBAyZrpJPdX2UKGgGR0ByW5AY51eTaAdNOAFoCEdAkRXdT987ZHV9lChoBkdAcTX/0ulGgGgHTQcBaAhHQJEW+KsMiKR1fZQoaAZHQHLPdbxEv01oB00WAWgIR0CRGGxrSE13dX2UKGgGR0BvtmRLbpNcaAdNNwFoCEdAkRiZPEbYLHV9lChoBkdAcEZ0aIeo1mgHS/VoCEdAkRkzZQHiWHV9lChoBkdAb7jA/LTx5WgHTTgBaAhHQJEZYqiGnGd1fZQoaAZHQHCqedXko4NoB01UAWgIR0CRGdEwFkhBdX2UKGgGR0Bx5zZ+QU5/aAdNCQFoCEdAkRqD/VAiV3V9lChoBkdAcO8HxjJ+2GgHTUcBaAhHQJEaowpON5t1fZQoaAZHQHFoLDEWIoFoB00OAWgIR0CRGuk4m1IAdX2UKGgGR0BwXg7ZFocraAdNSgFoCEdAkRsd+PRzBHV9lChoBkdAcMNbcoH9nGgHTQsBaAhHQJEbWkZaV2R1fZQoaAZHQG701eruIARoB01HAWgIR0CRHb4MF2V3dX2UKGgGR0Buw0Tg2qDLaAdNCAFoCEdAkR3mU4aP0nV9lChoBkdAbs0pYs/Y8WgHTU0BaAhHQJEegeYD1Xh1fZQoaAZHQHFeZrtVrARoB01UAWgIR0CRHp5zYEntdX2UKGgGR0Bwgzcdo372aAdNRgFoCEdAkSEgbZOBUnV9lChoBkdAcdgyPuG9H2gHTRIBaAhHQJEh4C0WuYB1fZQoaAZHQG5Et34bjtJoB00IAWgIR0CRIgVbA1vVdX2UKGgGR0Bt23ZRKpT/aAdNIQFoCEdAkSI6tcObzHV9lChoBkdAcQJ91loUSWgHS/VoCEdAkSKt1EE1VHV9lChoBkdAc2Y4X40uUWgHTVIBaAhHQJEjGcRUWEd1fZQoaAZHQHFya0UoKD1oB00MAWgIR0CRIx8rI5o5dX2UKGgGR0BwpDc8DB/JaAdNUwFoCEdAkSNHa8Hv+nV9lChoBkdAYOUTvAoG6mgHTegDaAhHQJEjj2FnIyV1fZQoaAZHQG6PICEHt4RoB00sAWgIR0CRI98vEjxDdX2UKGgGR0BvtvE2pAD8aAdNHwFoCEdAkSRFjy4FzXV9lChoBkdAQKXo/zJ6p2gHS89oCEdAkSUw/X5FgHV9lChoBkdAPHQsGxD9fmgHS/JoCEdAkSWVymygPHV9lChoBkdAcf1qBEroXGgHTWEBaAhHQJEmBPrOZ9d1fZQoaAZHQHFeh0lqrR1oB01BAWgIR0CRKCIacZtOdX2UKGgGR0Bw6BiLEUCaaAdNWAFoCEdAkSonKr7wa3V9lChoBkdAceoQv6CUYGgHTSIBaAhHQJErPOt4iX91fZQoaAZHQHH8wbZOBUdoB00QAWgIR0CRK0wxnFo+dX2UKGgGR0BR34/Vy3kQaAdL3mgIR0CRLMSZjQRgdX2UKGgGR0BxHV0mtyPuaAdNGgFoCEdAkSzRcqvvB3V9lChoBkdAcGcTGo73f2gHTSkBaAhHQJEs7D63y7R1fZQoaAZHQG38YG2TgVJoB00bAWgIR0CRLXFTNt65dX2UKGgGR0Bxm7uRcNYsaAdNUgFoCEdAkS5uLJjlP3V9lChoBkdAcCyEvTPSlWgHTSQBaAhHQJEugmdAgPp1fZQoaAZHQHBSgDFId2hoB009AWgIR0CRL+s+mm+CdX2UKGgGR0Bwsej2zv7WaAdNWgFoCEdAkTAmmxdIG3V9lChoBkdAcF7E/jbSJGgHTQ0BaAhHQJEwZQAMlTp1fZQoaAZHQHDAnjhky1xoB00mAWgIR0CRMOXoTwlTdX2UKGgGR0BwjFhy8zyjaAdNkAFoCEdAkTHafJ3gUHV9lChoBkdAcFkiQ1aW5mgHTSwBaAhHQJEx8eT3Zf51fZQoaAZHQHChjWPLgXNoB00qAWgIR0CRM7SXdCVsdX2UKGgGR0BsVPf642CNaAdNNQFoCEdAkTV9Aood/HV9lChoBkdAccF/etSydGgHTSUBaAhHQJE1zRBu4w11fZQoaAZHQHK3GOp84PxoB00NAWgIR0CRNhAvL5h0dX2UKGgGR0Bvi9mcvugIaAdNHAFoCEdAkTaa3d9DyHV9lChoBkdAbm+APuogm2gHS/loCEdAkTarwnYxtnV9lChoBkdAcdpcbzbvgGgHTUcBaAhHQJE21Cw8nu11fZQoaAZHQGxTLKvFFUhoB00sAWgIR0CRNv98JD3NdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ccae0942290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ccae0942320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ccae09423b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ccae0942440>", "_build": "<function ActorCriticPolicy._build at 0x7ccae09424d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ccae0942560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ccae09425f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ccae0942680>", "_predict": "<function ActorCriticPolicy._predict at 0x7ccae0942710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ccae09427a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ccae0942830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ccae09428c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ccae10e5f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702441346811881094, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2kfLtfCkY+8KxvvQSQmr69e3i9frp+PAAAAAAAAAAAZncFvt+qiT+dJzG+yy3+vrGhkr6zKeI9AAAAAAAAAADNL4E95UhuPsivC776Lq2+/YTmvcFbCz0AAAAAAAAAADN79rwCI0Y+v4s6PvB6lb6adQU+qX7FvAAAAAAAAAAAmhFHu/YYcrqQHHY1AgZwMKBjGLvar7m0AACAPwAAgD/TM0a+XvceP/IJ2z7pvbe+TFvIPSWfQT4AAAAAAAAAAM3kTTwK7S+7L+aLOztNizwFBz888INwvQAAgD8AAIA/Zhf0PEWpqTxrmf47EcKcvhtsZTzambM8AAAAAAAAAABml0y9w4xjvIxior12k4e9jGylPSEQAT8AAIA/AACAP1MxAz5acxI/nX0MvsAz3L5pfRw9oi/kOgAAAAAAAAAAgML9Pai0xj50PBe+EAGsvoAILj2+aAC+AAAAAAAAAAAzsxa8bwQKPfWSmL27baO+AKFvvXzbND0AAAAAAAAAAACLTb3hFLK6uuIduencFbStjP050IU0OAAAgD8AAIA/mm2Zu8m/Vz5QB+y9Nk6+vmccg72C9EM7AAAAAAAAAADaHRO+55U7P8/dlb3SeOy+FnGYvkPLDD0AAAAAAAAAAE1Mlj1CrDc/qBslPJ3m3L77Xu09egScvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFD1mjCYTmMAWyUS+qMAXSUR0C1r/V18stkdX2UKGgGR0ByEjmEGqxUaAdL3GgIR0C1sAoVmBe5dX2UKGgGR0BxyaEJ0GNaaAdL5WgIR0C1sBCYoiLVdX2UKGgGR0BxDGUeMhouaAdL+2gIR0C1sCKD0163dX2UKGgGR0BxKX8FY+0PaAdL8GgIR0C1sCbtzCDVdX2UKGgGR0BybUt5D7ZWaAdL92gIR0C1sKaF/QSjdX2UKGgGR0ByF5AWznieaAdL3GgIR0C1sLFMAWBSdX2UKGgGR0BwmD6P8yeqaAdL5GgIR0C1sLNbor4GdX2UKGgGR0Bt3GTNdJJ5aAdL3GgIR0C1sL4p2ECedX2UKGgGR0Byn4CxNZeSaAdNBwFoCEdAtbDabBoEjnV9lChoBkdAcp2f+CK77WgHS/ZoCEdAtbDx6OYIB3V9lChoBkdAcQIsBQvYe2gHS+hoCEdAtbEc1Muez3V9lChoBkdAc1YfthNM5GgHS+xoCEdAtbEhuBMBZXV9lChoBkdAb8gGIKtxMmgHS+VoCEdAtbE3u6VdHHV9lChoBkdAcmijzqbBoGgHTQwBaAhHQLWxSBo24ut1fZQoaAZHQHLYW5QP7N1oB0vfaAhHQLWxZZy+6Ah1fZQoaAZHQHHUOG9HtnhoB0v8aAhHQLWxZ/PgNw11fZQoaAZHQHEYbutwJgNoB00AAWgIR0C1sXsUuctodX2UKGgGR0BxdFFtsN2DaAdL+2gIR0C1sYo9HMEBdX2UKGgGR0BxnnOt4iX6aAdL6mgIR0C1sY37+DODdX2UKGgGR0BxoORr8BMjaAdL9WgIR0C1saEhA4XGdX2UKGgGR0BwZ5jtoi9qaAdL1GgIR0C1sewpWmxddX2UKGgGR0BuRkPxx1gZaAdL0mgIR0C1sfL4FiazdX2UKGgGR0Bv81kWhysCaAdL1GgIR0C1sfewkgOjdX2UKGgGR0BxQy2v0RODaAdL5mgIR0C1sh1xn3+NdX2UKGgGR0BxEt/G2kSFaAdL4mgIR0C1sjTUd7v5dX2UKGgGR0ByyyIKtxMnaAdL92gIR0C1snMhHLA6dX2UKGgGR0BzC/zTWoWIaAdL6WgIR0C1souDaoMsdX2UKGgGR0Bwa6ipNsWPaAdL62gIR0C1soqScLBsdX2UKGgGR0BxAtDMNc4YaAdL7GgIR0C1sqXbdrO8dX2UKGgGR0By+O5I6KceaAdL7GgIR0C1srgFLWZrdX2UKGgGR0Bze9v2oNutaAdLyGgIR0C1vFMMmWt2dX2UKGgGR0BvMcf3evZAaAdL4GgIR0C1vFXnlnyvdX2UKGgGR0Bx43RJEpiJaAdL7GgIR0C1vGPGMn7YdX2UKGgGR0BzKjzMA3kxaAdL7WgIR0C1vHWECeVcdX2UKGgGR0BwgbZRKpT/aAdL3mgIR0C1vIUPQOWjdX2UKGgGR0BxB8t8NQTFaAdNAAFoCEdAtbyhA4XGfnV9lChoBkdAcx8b0OEuhGgHS9loCEdAtbzSaqjrRnV9lChoBkdAcb8wuuieumgHS/VoCEdAtbzyiO/+KnV9lChoBkdAcq0+LFXJYGgHS/RoCEdAtbz3xb0OE3V9lChoBkdAcQFLgn+hoWgHS9hoCEdAtbz34h2W6nV9lChoBkdAccznyup0fmgHTQIBaAhHQLW9SR/ViF11fZQoaAZHQHAR8RlHz6JoB0vhaAhHQLW9TWSEDhd1fZQoaAZHQG9dA2Ifr8loB0vyaAhHQLW9g73fygB1fZQoaAZHQHNYsFyJbdJoB0vKaAhHQLW9k1rqMWJ1fZQoaAZHQG/HVFH8TBZoB0vWaAhHQLW9ljm0VrR1fZQoaAZHQHAd+jdpItloB0voaAhHQLW9pWAf+0h1fZQoaAZHQHHKaKk2xY9oB0v2aAhHQLW9qeGwiaB1fZQoaAZHQHH50xdpqRFoB00LAWgIR0C1va+9Jz1cdX2UKGgGR0BwnBWkrPMTaAdL8WgIR0C1vb7Gecx1dX2UKGgGR0BwV9S/CZWraAdL4WgIR0C1vc00iyIIdX2UKGgGR0BubLDjzZpSaAdL2GgIR0C1vdCcCo0idX2UKGgGR0BxH0QwsXizaAdLz2gIR0C1vdzq8lHCdX2UKGgGR0BzDxopQUHqaAdL52gIR0C1vibLhaTwdX2UKGgGR0BwxPgdfb9IaAdL2mgIR0C1vjHhfjS5dX2UKGgGR0BxQYo5PuXvaAdL9GgIR0C1vl5LuhK2dX2UKGgGR0BxhUVpKzzFaAdL0WgIR0C1voKs6q82dX2UKGgGR0BzfQ3o9s7/aAdNDAFoCEdAtb6IefZmI3V9lChoBkdAchMXcxj8UGgHS9BoCEdAtb7Zf9gndHV9lChoBkdAcPS9xZMcqGgHS91oCEdAtb7g67ulXXV9lChoBkdAcZnCLuQZGmgHTQUBaAhHQLW+4myxA0N1fZQoaAZHQHJ8FVtGd7RoB0vsaAhHQLW+7N9H+ZR1fZQoaAZHQHADQlv60ppoB0vfaAhHQLW++UgB91F1fZQoaAZHQHL7OCK77KtoB0vaaAhHQLW+99fkWAR1fZQoaAZHQHAVv/3nIQxoB0voaAhHQLW/GhM8HOd1fZQoaAZHQHNnnCXQdCFoB0vhaAhHQLW/I4wRGtp1fZQoaAZHQHLfsfeUILRoB00HAWgIR0C1vyMDKYAsdX2UKGgGR0BxirvYvnKXaAdL42gIR0C1vzTIeYD1dX2UKGgGR0ByjjyRSxZ/aAdL+GgIR0C1vz7xusLfdX2UKGgGR0BxxYhGH58CaAdL5GgIR0C1v4mfwqiHdX2UKGgGR0Bw///Ot4iYaAdL+WgIR0C1v7hpL26DdX2UKGgGR0BwLU/9pAUtaAdL6WgIR0C1v84q5LAYdX2UKGgGR0BzIdNCZ4OdaAdL8GgIR0C1v/xzV+ZxdX2UKGgGR0BtiGTLW7OFaAdL72gIR0C1wACqdYnwdX2UKGgGR0Bv+fNcGC7LaAdL32gIR0C1wDRyXD3udX2UKGgGR0BxOvsu3+dcaAdL1GgIR0C1wD/MGHHndX2UKGgGR0BylNQwblzVaAdL52gIR0C1wEppN9H+dX2UKGgGR0ByA2ylenhsaAdL6WgIR0C1wE9oFmnPdX2UKGgGR0ByVszwc5sCaAdL5GgIR0C1wFzp5eJIdX2UKGgGR0Bwk5eu3c59aAdL72gIR0C1wGMyi22HdX2UKGgGR0ByR8FNcnmaaAdL0mgIR0C1wGZFb3XadX2UKGgGR0BxZMuM+/xlaAdL4mgIR0C1wIa02LpBdX2UKGgGR0BzK9kK/mDEaAdL7WgIR0C1wK3MMZxadX2UKGgGR0BxwZle4TbnaAdL6WgIR0C1wLLVSXMRdX2UKGgGR0ByWSukk8ifaAdNIgFoCEdAtcDnUF0PpnV9lChoBkdAcO3ZydWhiGgHS/VoCEdAtcERUVBUrHV9lChoBkdAcF+vcrRSg2gHS+toCEdAtcEua6STyXV9lChoBkdAc+tMmnfl62gHS/NoCEdAtcFRRqGlAXV9lChoBkdAPKaur6tT1mgHS6loCEdAtcFTfl6qsHV9lChoBkdAcVFoWHk92WgHS+hoCEdAtcFzCiyprHV9lChoBkdAcREjpLVWj2gHS+5oCEdAtcF5TuOS4nV9lChoBkdAchfqhlDneWgHS9loCEdAtcGgNEw353V9lChoBkdAcEcBFuvU0GgHS+ZoCEdAtcGieRPoFHV9lChoBkdAb2sTewcHW2gHS9VoCEdAtcGrteD3/XV9lChoBkdAcMaVS4vvjWgHS99oCEdAtcHCJ0nw5XV9lChoBkdAccYleF+NLmgHS95oCEdAtcHEGPgeinV9lChoBkdAcVcMAWBSUGgHS9JoCEdAtcHRIy0rsnV9lChoBkdAcpjWykbgj2gHTQABaAhHQLXB0vxYq5N1fZQoaAZHQHLFLQswtapoB0vcaAhHQLXB/4Nqgyx1fZQoaAZHQHDAcNUfgaZoB0vraAhHQLXCGRvFWGR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 920, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:624349780beeb92e40efd22de94fa49737df80431987ecd6979f5e1d8584c1f2
3
- size 148038
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5ef75f27a33d45d1d845d0668a4e92ca910060e99f283008763d6fb33949d74
3
+ size 147428
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7e29ead1caf0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e29ead1cb80>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e29ead1cc10>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e29ead1cca0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7e29ead1cd30>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7e29ead1cdc0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e29ead1ce50>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e29ead1cee0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7e29ead1cf70>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e29ead1d000>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e29ead1d090>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e29ead1d120>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7e29eaeb6240>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1702379820070170163,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADHmDz41Is/ZYxXvfDpur4Q5oM9lndGPQAAAAAAAAAAGuZdvUn0Vz4SkoI8UZ1xvrsj7ry6P548AAAAAAAAAAAAhq68uMvlPX43WzpCKnO+QyKYPOJnXD0AAAAAAAAAAJr3X7xc1ju8Hgvzu1FnET2DAak9AJnovQAAgD8AAIA/+HiSvkzLZz+qurC8EdEAv9Ut2b5e3Ro+AAAAAAAAAABmrAk8FNC1uhIfWjOiInQuP2vquThvsLMAAIA/AACAP9qKrT3YN90+k0GJvSbxnb474C29iKN0PAAAAAAAAAAAZifIPApoAjzu34g8IANOvpcs57yVpMc9AAAAAAAAAABmYoc7n4fOu5bQW7uG4Y08kUIdvQPRbz0AAIA/AACAP+bZZj3EHJs/kHFIPqP7yL6TNBg+bMWcPQAAAAAAAAAAgAVSvUQeCj54YGE9LygavhGlPzsjbPm8AAAAAAAAAAAzwMK8SI+juhjFLDMcevQuouVlukolw7MAAIA/AACAP80e9jxpn4M/IqobvOOCtL461aU9HIkbPQAAAAAAAAAAZhyWvTfEmD/+pEW+cZD1vkSdq72TraW7AAAAAAAAAADaslM+2JGZPxs6/T7k+tq+pyrYPoAQXj4AAAAAAAAAABpjTz28jbE/fvlsPgD1iL5RS5c9bsv8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC9d3bEgnuMAWyUTSYBjAF0lEdAkOjaz/p+t3V9lChoBkdActpaa1Cw8mgHTQoBaAhHQJDqIbvPTod1fZQoaAZHQHGnFPva11JoB003AWgIR0CQ6vtGus90dX2UKGgGR0ByTzQZ4wAVaAdNHQFoCEdAkOuGQOnVG3V9lChoBkdAcUoqrzXjEWgHTTMBaAhHQJDrpsoDxLF1fZQoaAZHQHHUpwwTM7loB0v3aAhHQJDr2nqFAVx1fZQoaAZHQHAJKvRqoIhoB00vAWgIR0CQ6+GUwBYFdX2UKGgGR0BxAcqH446waAdNFwFoCEdAkOxHY6GQCHV9lChoBkdAKhlHrhR64WgHS9FoCEdAkOyyoKlYU3V9lChoBkdAciJNy5qdpmgHTSwBaAhHQJDtku+RHPN1fZQoaAZHQHEjaG5+YtxoB01JAWgIR0CQ7a9FnZkDdX2UKGgGR0BvzGYOUdJbaAdNEgFoCEdAkO3poK2KEXV9lChoBkdAb8IQumJm/WgHTSkBaAhHQJDt9zijtXx1fZQoaAZHQHFWrQ1JlJ9oB003AWgIR0CQ73xIJ7b+dX2UKGgGR0Bxgz2RJVbSaAdNKAFoCEdAkPCSxmkFfXV9lChoBkdAbfN2+PBBRmgHTUEBaAhHQJDxm6jFhod1fZQoaAZHQHKUAxFiKBNoB00lAWgIR0CQ8bO32EkCdX2UKGgGR0BxHklkYoAoaAdNKAFoCEdAkPO31BdD6XV9lChoBkdActJyNGViWmgHTQABaAhHQJD0Ak5ZKWd1fZQoaAZHQHANanR9gF5oB00eAWgIR0CQ9dTNdJJ5dX2UKGgGR0BwPqKDTSb6aAdNOwFoCEdAkPXiGnGbTnV9lChoBkdAcYWndweeWmgHS/5oCEdAkPXtAPd2xXV9lChoBkdAb2VVGTcIq2gHTTwBaAhHQJD2nMJQcgh1fZQoaAZHQHFNpRoAXEZoB00zAWgIR0CQ9rRjz7MxdX2UKGgGR0BweVlar3j/aAdNMwFoCEdAkPdcHv+fiHV9lChoBkdAcLTDArQPZ2gHTQ0BaAhHQJD4TEBKcut1fZQoaAZHQHHHqur6tT1oB00aAWgIR0CQ+LY3eenRdX2UKGgGR0BwmKKuSwGGaAdNMQFoCEdAkPkpZSvTw3V9lChoBkdAb2adVea8YmgHTS4BaAhHQJD5MfxMFll1fZQoaAZHQHFb3/YJ3PloB00QAWgIR0CQ+jXTmW+odX2UKGgGR0ANBtWMju8caAdL5GgIR0CQ+q7UG3WndX2UKGgGR0Bx8A1P3ztkaAdNGgFoCEdAkPuJpJwsG3V9lChoBkdAclAeS0Sh8WgHS/NoCEdAkP54hyKekHV9lChoBkdAT+0UKzAvc2gHS85oCEdAkP6BLTQVsXV9lChoBkdAcWvfx+az/2gHTSIBaAhHQJD+xM495hV1fZQoaAZHQHE17D/EOy5oB003AWgIR0CQ/zvttyggdX2UKGgGR0BuOLch1TzeaAdNDgFoCEdAkP9lX/5tWXV9lChoBkdAcNuRQ79ycWgHTSMBaAhHQJEAFP9DQZ51fZQoaAZHQHIoJm29cr1oB00fAWgIR0CRAIjgydnTdX2UKGgGR0Bx4TM0P6KtaAdL/mgIR0CRASi0OVgQdX2UKGgGR0Bv98vf0mMPaAdNTQFoCEdAkQHkOI68x3V9lChoBkdAcMCnRb8m8mgHTSkBaAhHQJECKquKXOZ1fZQoaAZHQHGhwOavzOJoB00lAWgIR0CRAr0HQhOhdX2UKGgGR0Byb6AnUlRhaAdNPQFoCEdAkQNtPYWcjXV9lChoBkdAcRT0MgEEDGgHTSsBaAhHQJED64EwFkh1fZQoaAZHQHBtpMg2ZRdoB00gAWgIR0CRBAyZrpJPdX2UKGgGR0ByW5AY51eTaAdNOAFoCEdAkRXdT987ZHV9lChoBkdAcTX/0ulGgGgHTQcBaAhHQJEW+KsMiKR1fZQoaAZHQHLPdbxEv01oB00WAWgIR0CRGGxrSE13dX2UKGgGR0BvtmRLbpNcaAdNNwFoCEdAkRiZPEbYLHV9lChoBkdAcEZ0aIeo1mgHS/VoCEdAkRkzZQHiWHV9lChoBkdAb7jA/LTx5WgHTTgBaAhHQJEZYqiGnGd1fZQoaAZHQHCqedXko4NoB01UAWgIR0CRGdEwFkhBdX2UKGgGR0Bx5zZ+QU5/aAdNCQFoCEdAkRqD/VAiV3V9lChoBkdAcO8HxjJ+2GgHTUcBaAhHQJEaowpON5t1fZQoaAZHQHFoLDEWIoFoB00OAWgIR0CRGuk4m1IAdX2UKGgGR0BwXg7ZFocraAdNSgFoCEdAkRsd+PRzBHV9lChoBkdAcMNbcoH9nGgHTQsBaAhHQJEbWkZaV2R1fZQoaAZHQG701eruIARoB01HAWgIR0CRHb4MF2V3dX2UKGgGR0Buw0Tg2qDLaAdNCAFoCEdAkR3mU4aP0nV9lChoBkdAbs0pYs/Y8WgHTU0BaAhHQJEegeYD1Xh1fZQoaAZHQHFeZrtVrARoB01UAWgIR0CRHp5zYEntdX2UKGgGR0Bwgzcdo372aAdNRgFoCEdAkSEgbZOBUnV9lChoBkdAcdgyPuG9H2gHTRIBaAhHQJEh4C0WuYB1fZQoaAZHQG5Et34bjtJoB00IAWgIR0CRIgVbA1vVdX2UKGgGR0Bt23ZRKpT/aAdNIQFoCEdAkSI6tcObzHV9lChoBkdAcQJ91loUSWgHS/VoCEdAkSKt1EE1VHV9lChoBkdAc2Y4X40uUWgHTVIBaAhHQJEjGcRUWEd1fZQoaAZHQHFya0UoKD1oB00MAWgIR0CRIx8rI5o5dX2UKGgGR0BwpDc8DB/JaAdNUwFoCEdAkSNHa8Hv+nV9lChoBkdAYOUTvAoG6mgHTegDaAhHQJEjj2FnIyV1fZQoaAZHQG6PICEHt4RoB00sAWgIR0CRI98vEjxDdX2UKGgGR0BvtvE2pAD8aAdNHwFoCEdAkSRFjy4FzXV9lChoBkdAQKXo/zJ6p2gHS89oCEdAkSUw/X5FgHV9lChoBkdAPHQsGxD9fmgHS/JoCEdAkSWVymygPHV9lChoBkdAcf1qBEroXGgHTWEBaAhHQJEmBPrOZ9d1fZQoaAZHQHFeh0lqrR1oB01BAWgIR0CRKCIacZtOdX2UKGgGR0Bw6BiLEUCaaAdNWAFoCEdAkSonKr7wa3V9lChoBkdAceoQv6CUYGgHTSIBaAhHQJErPOt4iX91fZQoaAZHQHH8wbZOBUdoB00QAWgIR0CRK0wxnFo+dX2UKGgGR0BR34/Vy3kQaAdL3mgIR0CRLMSZjQRgdX2UKGgGR0BxHV0mtyPuaAdNGgFoCEdAkSzRcqvvB3V9lChoBkdAcGcTGo73f2gHTSkBaAhHQJEs7D63y7R1fZQoaAZHQG38YG2TgVJoB00bAWgIR0CRLXFTNt65dX2UKGgGR0Bxm7uRcNYsaAdNUgFoCEdAkS5uLJjlP3V9lChoBkdAcCyEvTPSlWgHTSQBaAhHQJEugmdAgPp1fZQoaAZHQHBSgDFId2hoB009AWgIR0CRL+s+mm+CdX2UKGgGR0Bwsej2zv7WaAdNWgFoCEdAkTAmmxdIG3V9lChoBkdAcF7E/jbSJGgHTQ0BaAhHQJEwZQAMlTp1fZQoaAZHQHDAnjhky1xoB00mAWgIR0CRMOXoTwlTdX2UKGgGR0BwjFhy8zyjaAdNkAFoCEdAkTHafJ3gUHV9lChoBkdAcFkiQ1aW5mgHTSwBaAhHQJEx8eT3Zf51fZQoaAZHQHChjWPLgXNoB00qAWgIR0CRM7SXdCVsdX2UKGgGR0BsVPf642CNaAdNNQFoCEdAkTV9Aood/HV9lChoBkdAccF/etSydGgHTSUBaAhHQJE1zRBu4w11fZQoaAZHQHK3GOp84PxoB00NAWgIR0CRNhAvL5h0dX2UKGgGR0Bvi9mcvugIaAdNHAFoCEdAkTaa3d9DyHV9lChoBkdAbm+APuogm2gHS/loCEdAkTarwnYxtnV9lChoBkdAcdpcbzbvgGgHTUcBaAhHQJE21Cw8nu11fZQoaAZHQGxTLKvFFUhoB00sAWgIR0CRNv98JD3NdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -84,7 +84,7 @@
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ccae0942290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ccae0942320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ccae09423b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ccae0942440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ccae09424d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ccae0942560>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ccae09425f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ccae0942680>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ccae0942710>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ccae09427a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ccae0942830>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ccae09428c0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ccae10e5f40>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1507328,
25
+ "_total_timesteps": 1500000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1702441346811881094,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2kfLtfCkY+8KxvvQSQmr69e3i9frp+PAAAAAAAAAAAZncFvt+qiT+dJzG+yy3+vrGhkr6zKeI9AAAAAAAAAADNL4E95UhuPsivC776Lq2+/YTmvcFbCz0AAAAAAAAAADN79rwCI0Y+v4s6PvB6lb6adQU+qX7FvAAAAAAAAAAAmhFHu/YYcrqQHHY1AgZwMKBjGLvar7m0AACAPwAAgD/TM0a+XvceP/IJ2z7pvbe+TFvIPSWfQT4AAAAAAAAAAM3kTTwK7S+7L+aLOztNizwFBz888INwvQAAgD8AAIA/Zhf0PEWpqTxrmf47EcKcvhtsZTzambM8AAAAAAAAAABml0y9w4xjvIxior12k4e9jGylPSEQAT8AAIA/AACAP1MxAz5acxI/nX0MvsAz3L5pfRw9oi/kOgAAAAAAAAAAgML9Pai0xj50PBe+EAGsvoAILj2+aAC+AAAAAAAAAAAzsxa8bwQKPfWSmL27baO+AKFvvXzbND0AAAAAAAAAAACLTb3hFLK6uuIduencFbStjP050IU0OAAAgD8AAIA/mm2Zu8m/Vz5QB+y9Nk6+vmccg72C9EM7AAAAAAAAAADaHRO+55U7P8/dlb3SeOy+FnGYvkPLDD0AAAAAAAAAAE1Mlj1CrDc/qBslPJ3m3L77Xu09egScvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFD1mjCYTmMAWyUS+qMAXSUR0C1r/V18stkdX2UKGgGR0ByEjmEGqxUaAdL3GgIR0C1sAoVmBe5dX2UKGgGR0BxyaEJ0GNaaAdL5WgIR0C1sBCYoiLVdX2UKGgGR0BxDGUeMhouaAdL+2gIR0C1sCKD0163dX2UKGgGR0BxKX8FY+0PaAdL8GgIR0C1sCbtzCDVdX2UKGgGR0BybUt5D7ZWaAdL92gIR0C1sKaF/QSjdX2UKGgGR0ByF5AWznieaAdL3GgIR0C1sLFMAWBSdX2UKGgGR0BwmD6P8yeqaAdL5GgIR0C1sLNbor4GdX2UKGgGR0Bt3GTNdJJ5aAdL3GgIR0C1sL4p2ECedX2UKGgGR0Byn4CxNZeSaAdNBwFoCEdAtbDabBoEjnV9lChoBkdAcp2f+CK77WgHS/ZoCEdAtbDx6OYIB3V9lChoBkdAcQIsBQvYe2gHS+hoCEdAtbEc1Muez3V9lChoBkdAc1YfthNM5GgHS+xoCEdAtbEhuBMBZXV9lChoBkdAb8gGIKtxMmgHS+VoCEdAtbE3u6VdHHV9lChoBkdAcmijzqbBoGgHTQwBaAhHQLWxSBo24ut1fZQoaAZHQHLYW5QP7N1oB0vfaAhHQLWxZZy+6Ah1fZQoaAZHQHHUOG9HtnhoB0v8aAhHQLWxZ/PgNw11fZQoaAZHQHEYbutwJgNoB00AAWgIR0C1sXsUuctodX2UKGgGR0BxdFFtsN2DaAdL+2gIR0C1sYo9HMEBdX2UKGgGR0BxnnOt4iX6aAdL6mgIR0C1sY37+DODdX2UKGgGR0BxoORr8BMjaAdL9WgIR0C1saEhA4XGdX2UKGgGR0BwZ5jtoi9qaAdL1GgIR0C1sewpWmxddX2UKGgGR0BuRkPxx1gZaAdL0mgIR0C1sfL4FiazdX2UKGgGR0Bv81kWhysCaAdL1GgIR0C1sfewkgOjdX2UKGgGR0BxQy2v0RODaAdL5mgIR0C1sh1xn3+NdX2UKGgGR0BxEt/G2kSFaAdL4mgIR0C1sjTUd7v5dX2UKGgGR0ByyyIKtxMnaAdL92gIR0C1snMhHLA6dX2UKGgGR0BzC/zTWoWIaAdL6WgIR0C1souDaoMsdX2UKGgGR0Bwa6ipNsWPaAdL62gIR0C1soqScLBsdX2UKGgGR0BxAtDMNc4YaAdL7GgIR0C1sqXbdrO8dX2UKGgGR0By+O5I6KceaAdL7GgIR0C1srgFLWZrdX2UKGgGR0Bze9v2oNutaAdLyGgIR0C1vFMMmWt2dX2UKGgGR0BvMcf3evZAaAdL4GgIR0C1vFXnlnyvdX2UKGgGR0Bx43RJEpiJaAdL7GgIR0C1vGPGMn7YdX2UKGgGR0BzKjzMA3kxaAdL7WgIR0C1vHWECeVcdX2UKGgGR0BwgbZRKpT/aAdL3mgIR0C1vIUPQOWjdX2UKGgGR0BxB8t8NQTFaAdNAAFoCEdAtbyhA4XGfnV9lChoBkdAcx8b0OEuhGgHS9loCEdAtbzSaqjrRnV9lChoBkdAcb8wuuieumgHS/VoCEdAtbzyiO/+KnV9lChoBkdAcq0+LFXJYGgHS/RoCEdAtbz3xb0OE3V9lChoBkdAcQFLgn+hoWgHS9hoCEdAtbz34h2W6nV9lChoBkdAccznyup0fmgHTQIBaAhHQLW9SR/ViF11fZQoaAZHQHAR8RlHz6JoB0vhaAhHQLW9TWSEDhd1fZQoaAZHQG9dA2Ifr8loB0vyaAhHQLW9g73fygB1fZQoaAZHQHNYsFyJbdJoB0vKaAhHQLW9k1rqMWJ1fZQoaAZHQG/HVFH8TBZoB0vWaAhHQLW9ljm0VrR1fZQoaAZHQHAd+jdpItloB0voaAhHQLW9pWAf+0h1fZQoaAZHQHHKaKk2xY9oB0v2aAhHQLW9qeGwiaB1fZQoaAZHQHH50xdpqRFoB00LAWgIR0C1va+9Jz1cdX2UKGgGR0BwnBWkrPMTaAdL8WgIR0C1vb7Gecx1dX2UKGgGR0BwV9S/CZWraAdL4WgIR0C1vc00iyIIdX2UKGgGR0BubLDjzZpSaAdL2GgIR0C1vdCcCo0idX2UKGgGR0BxH0QwsXizaAdLz2gIR0C1vdzq8lHCdX2UKGgGR0BzDxopQUHqaAdL52gIR0C1vibLhaTwdX2UKGgGR0BwxPgdfb9IaAdL2mgIR0C1vjHhfjS5dX2UKGgGR0BxQYo5PuXvaAdL9GgIR0C1vl5LuhK2dX2UKGgGR0BxhUVpKzzFaAdL0WgIR0C1voKs6q82dX2UKGgGR0BzfQ3o9s7/aAdNDAFoCEdAtb6IefZmI3V9lChoBkdAchMXcxj8UGgHS9BoCEdAtb7Zf9gndHV9lChoBkdAcPS9xZMcqGgHS91oCEdAtb7g67ulXXV9lChoBkdAcZnCLuQZGmgHTQUBaAhHQLW+4myxA0N1fZQoaAZHQHJ8FVtGd7RoB0vsaAhHQLW+7N9H+ZR1fZQoaAZHQHADQlv60ppoB0vfaAhHQLW++UgB91F1fZQoaAZHQHL7OCK77KtoB0vaaAhHQLW+99fkWAR1fZQoaAZHQHAVv/3nIQxoB0voaAhHQLW/GhM8HOd1fZQoaAZHQHNnnCXQdCFoB0vhaAhHQLW/I4wRGtp1fZQoaAZHQHLfsfeUILRoB00HAWgIR0C1vyMDKYAsdX2UKGgGR0BxirvYvnKXaAdL42gIR0C1vzTIeYD1dX2UKGgGR0ByjjyRSxZ/aAdL+GgIR0C1vz7xusLfdX2UKGgGR0BxxYhGH58CaAdL5GgIR0C1v4mfwqiHdX2UKGgGR0Bw///Ot4iYaAdL+WgIR0C1v7hpL26DdX2UKGgGR0BwLU/9pAUtaAdL6WgIR0C1v84q5LAYdX2UKGgGR0BzIdNCZ4OdaAdL8GgIR0C1v/xzV+ZxdX2UKGgGR0BtiGTLW7OFaAdL72gIR0C1wACqdYnwdX2UKGgGR0Bv+fNcGC7LaAdL32gIR0C1wDRyXD3udX2UKGgGR0BxOvsu3+dcaAdL1GgIR0C1wD/MGHHndX2UKGgGR0BylNQwblzVaAdL52gIR0C1wEppN9H+dX2UKGgGR0ByA2ylenhsaAdL6WgIR0C1wE9oFmnPdX2UKGgGR0ByVszwc5sCaAdL5GgIR0C1wFzp5eJIdX2UKGgGR0Bwk5eu3c59aAdL72gIR0C1wGMyi22HdX2UKGgGR0ByR8FNcnmaaAdL0mgIR0C1wGZFb3XadX2UKGgGR0BxZMuM+/xlaAdL4mgIR0C1wIa02LpBdX2UKGgGR0BzK9kK/mDEaAdL7WgIR0C1wK3MMZxadX2UKGgGR0BxwZle4TbnaAdL6WgIR0C1wLLVSXMRdX2UKGgGR0ByWSukk8ifaAdNIgFoCEdAtcDnUF0PpnV9lChoBkdAcO3ZydWhiGgHS/VoCEdAtcERUVBUrHV9lChoBkdAcF+vcrRSg2gHS+toCEdAtcEua6STyXV9lChoBkdAc+tMmnfl62gHS/NoCEdAtcFRRqGlAXV9lChoBkdAPKaur6tT1mgHS6loCEdAtcFTfl6qsHV9lChoBkdAcVFoWHk92WgHS+hoCEdAtcFzCiyprHV9lChoBkdAcREjpLVWj2gHS+5oCEdAtcF5TuOS4nV9lChoBkdAchfqhlDneWgHS9loCEdAtcGgNEw353V9lChoBkdAcEcBFuvU0GgHS+ZoCEdAtcGieRPoFHV9lChoBkdAb2sTewcHW2gHS9VoCEdAtcGrteD3/XV9lChoBkdAcMaVS4vvjWgHS99oCEdAtcHCJ0nw5XV9lChoBkdAccYleF+NLmgHS95oCEdAtcHEGPgeinV9lChoBkdAcVcMAWBSUGgHS9JoCEdAtcHRIy0rsnV9lChoBkdAcpjWykbgj2gHTQABaAhHQLXB0vxYq5N1fZQoaAZHQHLFLQswtapoB0vcaAhHQLXB/4Nqgyx1fZQoaAZHQHDAcNUfgaZoB0vraAhHQLXCGRvFWGR1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 920,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5fe6970ab97efda5b974f100dae1e5b550c81977a6653b4efcfff4b57ef1132
3
- size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa830e297ca36af34a5dadfb42008acb2f41959fa88c085a58d82882d0ceedc5
3
+ size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6dcd573317a0d724b991148558911c053dde7e0480a34864c035deed4493e39b
3
- size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88bd8c82e79b28e9a8637f2b08a186d4cf574aca5e7349082115e97e51f757d
3
+ size 43634
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -2,7 +2,7 @@
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.1.0+cu118
5
- - GPU Enabled: True
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
 
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: False
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 262.8609696, "std_reward": 25.17422302568182, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-12T11:53:31.094316"}
 
1
+ {"mean_reward": 285.21750790000004, "std_reward": 21.93486320167441, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-13T04:59:31.783042"}