File size: 19,075 Bytes
479447c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
        "__module__": "sb3_contrib.tqc.policies",
        "__doc__": "\n    Policy class (with both actor and critic) for TQC.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n    :param features_extractor_class: Features extractor to use.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    :param n_quantiles: Number of quantiles for the critic.\n    :param n_critics: Number of critic networks to create.\n    :param share_features_extractor: Whether to share or not the features extractor\n        between the actor and the critic (this saves computation time)\n    ",
        "__init__": "<function MultiInputPolicy.__init__ at 0x2caad3700>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x2caacfec0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        "use_sde": false
    },
    "num_timesteps": 50000,
    "_total_timesteps": 50000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1706930715733360000,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyimGv0QNgb7f7/I9W1mPP16QSj8z+vI9KtZRPzJmkz2X9fI9wCjwvgwLir+X9fI9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAL0auvwvSx79+40W/MMLTv/bPXr+Ou68/GW7RPzUAbj+fp5c/H6FOvq/Me7+zzoq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAArNhE/sclxP1B2hr5XEro/45wBP+/fkT+G/WU/yimGv0QNgb7f7/I9D50LO5WdPb043hq9/76JPS8mmryEWXk9Vf5gO5CSm7yloHY7lEGqPyrcQL9d0iS/U9XNPuRTgL9iTjc/6QmCv1tZjz9ekEo/M/ryPTZUATtpqT29bfgXvXqDij3uH5y85xh6PdibrzvjnpC8g36CO42v4L/QNyRAsAzkvhYBbb0d4Tm+FK8WPB81kT8q1lE/MmaTPZf18j1iFvY6IOY8vcBVG72pKIo9/cyavIRZeT1U/mA7j5KbvAxtdzuaiBrA89YgQIdiub5Du6S/GR+2vn15H7/wpZM/wCjwvgwLir+X9fI9QT36OtTQPr2xaxu9/CGKPXYombyEWXk9VP5gO5CSm7z+bHc7lGgOSwRLE4aUaBJ0lFKUdS4=",
        "achieved_goal": "[[-1.0481503  -0.25205433  0.11862158]\n [ 1.1199144   0.79126537  0.11864128]\n [ 0.81967413  0.07197227  0.11863249]\n [-0.4690609  -1.0784621   0.11863249]]",
        "desired_goal": "[[-1.3615168  -1.5610975  -0.7730025 ]\n [-1.6543636  -0.87036073  1.3729112 ]\n [ 1.6361724   0.92969066  1.1848029 ]\n [-0.2017865  -0.983592   -1.084433  ]]",
        "observation": "[[ 5.6723279e-01  9.4448382e-01 -2.6262140e-01  1.4536847e+00\n   5.0630015e-01  1.1396464e+00  8.9839971e-01 -1.0481503e+00\n  -2.5205433e-01  1.1862158e-01  2.1303331e-03 -4.6292860e-02\n  -3.7809581e-02  6.7258827e-02 -1.8817035e-02  6.0876384e-02\n   3.4331281e-03 -1.8990785e-02  3.7632373e-03]\n [ 1.3301263e+00 -7.5335944e-01 -6.4383489e-01  4.0201816e-01\n  -1.0025601e+00  7.1603978e-01 -1.0159274e+00  1.1199144e+00\n   7.9126537e-01  1.1864128e-01  1.9734032e-03 -4.6304140e-02\n  -3.7102152e-02  6.7633584e-02 -1.9058194e-02  6.1058905e-02\n   5.3591542e-03 -1.7653888e-02  3.9823665e-03]\n [-1.7553574e+00  2.5659065e+00 -4.4540930e-01 -5.7862364e-02\n  -1.8152280e-01  9.1970153e-03  1.1344336e+00  8.1967413e-01\n   7.1972266e-02  1.1863249e-01  1.8774981e-03 -4.6117902e-02\n  -3.7923574e-02  6.7460366e-02 -1.8896574e-02  6.0876384e-02\n   3.4331279e-03 -1.8990783e-02  3.7754206e-03]\n [-2.4145875e+00  2.5131195e+00 -3.6207983e-01 -1.2869648e+00\n  -3.5570601e-01 -6.2294751e-01  1.1535015e+00 -4.6906090e-01\n  -1.0784621e+00  1.1863249e-01  1.9091741e-03 -4.6585873e-02\n  -3.7944499e-02  6.7447633e-02 -1.8696051e-02  6.0876384e-02\n   3.4331279e-03 -1.8990785e-02  3.7754173e-03]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqJoJvlmt67zQv6M8d87oPfid0D2pwaM8fnSiPZBcQTzWwKM8hoSLvatqB77WwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm8j3vXX1B77xxiU9JW4VvvXXlL0Y5jk+gIcJPsjiqz1wPC0+Xwm2vNYEqb0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAA/vUE8T2CiPtK6aD2jUvI+c+eWPkOGAT/W8JA9qJoJvlmt67zQv6M8ONiMOE46GzcHMH24FrKpt0LuF7bQSlas6ulRL5SpWi4sf/u4cNpEPvHV4b20YGI8aqUdPROU3b5koZo++juwO3fO6D34ndA9qcGjPOJUvjfGJPs2M/u4OW4mnDcy/O+31HioN6109jqgbZw6yICcOY2VCb9Frjk/U0YUPaFIG757Jxe94NccvSR0oT1+dKI9kFxBPNbAozzmmJa2RNYZOIAcBbmyKTE1KcI3t/jHjKzzlZSu9i2KL1K1yriVfjG/ZUc2P7HGOj3G6Ci/M5P3vaBtr76kyaI9hoSLvatqB77WwKM8+ZiWNk3WGbjL7BG57yUxtcDBNzegbYysDzGULgxhiq+XuMq4lGgOSwRLE4aUaBJ0lFKUdS4=",
        "achieved_goal": "[[-0.13437903 -0.02876918  0.01998892]\n [ 0.11367505  0.1018638   0.01998981]\n [ 0.07932375  0.01180185  0.01998941]\n [-0.06812386 -0.13224284  0.01998941]]",
        "desired_goal": "[[-0.12098809 -0.13277228  0.04047293]\n [-0.14592798 -0.07267753  0.1815418 ]\n [ 0.13430595  0.08392864  0.16917586]\n [-0.02222127 -0.08252876  0.02      ]]",
        "observation": "[[ 1.1824905e-02  3.1714103e-01  5.6818791e-02  4.7328672e-01\n   2.9473457e-01  5.0595492e-01  7.0771858e-02 -1.3437903e-01\n  -2.8769182e-02  1.9988924e-02  6.7159941e-05  9.2522951e-06\n  -6.0364629e-05 -2.0229298e-05 -2.2639438e-06 -3.0452758e-12\n   1.9091542e-10  4.9718077e-11 -1.1992300e-04]\n [ 1.9223952e-01 -1.1027134e-01  1.3817001e-02  3.8487829e-02\n  -4.3277034e-01  3.0201256e-01  5.3782435e-03  1.1367505e-01\n   1.0186380e-01  1.9989805e-02  2.2689292e-05  7.4846639e-06\n   3.5282373e-04  1.8614544e-05 -2.8608458e-05  2.0083426e-05\n   1.8803083e-03  1.1934526e-03  2.9850588e-04]\n [-5.3743821e-01  7.2531539e-01  3.6199879e-02 -1.5164424e-01\n  -3.6902886e-02 -3.8291812e-02  7.8834802e-02  7.9323754e-02\n   1.1801854e-02  1.9989412e-02 -4.4881481e-06  3.6677593e-05\n  -1.2694485e-04  6.5998313e-07 -1.0952856e-05 -4.0012403e-12\n  -6.7568971e-11  2.5134711e-10 -9.6658841e-05]\n [-6.9333774e-01  7.1202689e-01  4.5599643e-02 -6.5980184e-01\n  -1.2088623e-01 -3.4263325e-01  7.9486161e-02 -6.8123862e-02\n  -1.3224284e-01  1.9989412e-02  4.4881567e-06 -3.6677626e-05\n  -1.3916490e-04 -6.5992839e-07  1.0952761e-05 -3.9912101e-12\n   6.7389753e-11 -2.5171010e-10 -9.6664931e-05]]"
    },
    "_episode_num": 1032,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0B8n4zhxYJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8q0WJrLyMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8raFrVOKwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8rq8oQWepdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8vvG7z06HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8yuwMYuTSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8zUWFev6kdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8zlTxXnyNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B83q0rsjVydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B8308q4H5adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B86pIwudwvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B87OrGR3eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B87fdN34bkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B87pqO938odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B8/vRWtEG8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9CjGuLaVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9DIuDjBEbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Dk55qubJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Hmd8Rcu8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9KaPBBRhudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9LAGqxTsIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Lch5gPVedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Pdl18stkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9SSjesPrfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9S5YvFm4BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9TXvfCQ9zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9Xm9bor4GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9ag2vStvGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9bGYa5wwTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9bihM8HObdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9flmDlHSXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9icOQQtjDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9jBHAh0QsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9jfMxGlQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9noOmR/3GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9ql7SiM5wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9rOUNayKOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9rtMTN+spdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9v1P557gLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9yyG21D0EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9zX3IuGsWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9zzohY/3WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B934S6DoQndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B96y2v0RODdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B97Y9pyp71dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B971nbqQiidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B9/+3b212JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+C9iWmgrZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+DnFirksCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+EImQbMoudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+IbJFLFn7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+LaGdqcmTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+MBz7uUlidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+MfU6PsAvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Qqr3j+72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Tl3MY/FBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+UOIyj59FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Us287IT5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+Y8URFqi5dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0B+ZHI6r/83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+b8/pt78fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+cmvr4WUKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+dENqgyuZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+hcLux8lYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+kUoWpIczdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+k86Mir1edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+lYtNBWxRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+ppwo9cKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+sZUcXFcZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+s/qJMxoJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+td5hScbzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+yLBP9DQadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+1CdTYNAkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+1pIy0rsjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+2DnkkrwwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+6UNFz+3pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+9BntfG+9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B+9nvAoG6gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B++CUnogV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/CPspobn6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/E7fj0cwQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/Fho6CDmKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/F8i+tbLVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/KW/336AOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/NKkEcKgJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/Nwssg+yJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/OMDklu3udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/SYsPJ7swdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/VDjkuHvddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/VrpJPIn0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/WHX4CZF5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/aTviLl3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/dC1a4c3mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/doBjnV5KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/eC6FuejEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/icCdSVGDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/lOEUTL4fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/l0fV7Qb/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/mRCIDYAbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0B/qhjz7MxHdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYiJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
    },
    "_n_updates": 12475,
    "buffer_size": 1000000,
    "batch_size": 256,
    "learning_starts": 100,
    "tau": 0.005,
    "gamma": 0.99,
    "gradient_steps": 1,
    "optimize_memory_usage": false,
    "replay_buffer_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
        "__module__": "stable_baselines3.common.buffers",
        "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}",
        "__doc__": "\n    Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n    Extends the ReplayBuffer to use dictionary observations\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ",
        "__init__": "<function DictReplayBuffer.__init__ at 0x2c9ef6dc0>",
        "add": "<function DictReplayBuffer.add at 0x2c9ef6e50>",
        "sample": "<function DictReplayBuffer.sample at 0x2c9ef6ee0>",
        "_get_samples": "<function DictReplayBuffer._get_samples at 0x2c9ef6f70>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x2c9ef5e00>"
    },
    "replay_buffer_kwargs": {},
    "train_freq": {
        ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
        ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
    },
    "use_sde_at_warmup": false,
    "target_entropy": -4.0,
    "ent_coef": "auto",
    "target_update_interval": 1,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
        ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
        "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRPsrQP82ZAJiE4ibg3CLunwCMA2luY5SKEBMq+r6x7isLtj+lPtXmk1V1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
        "dtype": "float32",
        "bounded_below": "[ True  True  True  True]",
        "bounded_above": "[ True  True  True  True]",
        "_shape": [
            4
        ],
        "low": "[-1. -1. -1. -1.]",
        "high": "[1. 1. 1. 1.]",
        "low_repr": "-1.0",
        "high_repr": "1.0",
        "_np_random": "Generator(PCG64)"
    },
    "n_envs": 4,
    "top_quantiles_to_drop_per_net": 2,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9Vc2Vycy9qYnVjaDgwOC9taW5pZm9yZ2UzL2VudnMvaGYtcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9Vc2Vycy9qYnVjaDgwOC9taW5pZm9yZ2UzL2VudnMvaGYtcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "batch_norm_stats": [],
    "batch_norm_stats_target": []
}