jdzw2014

jdzw2014

AI & ML interests

None yet

Recent Activity

liked a model 21 days ago
sthenno-com/miscii-14b-1225
liked a dataset 2 months ago
PleIAs/common_corpus
updated a collection 5 months ago
great_dataset
View all activity

Organizations

2014's profile picture

jdzw2014's activity

upvoted an article 6 months ago
reacted to fdaudens's post with 🚀 6 months ago
view post
Post
2288
🚀 Introducing the Model Drops Tracker! 🕵️‍♂️

Feeling overwhelmed by the AI model release frenzy? 🤯 You're not alone!

I built this simple tool to help us all keep up:
- Filter recent models from the 🤗 Hub
- Set minimum likes threshold
- Choose how recent you want to go

Try it out and let me know what you think: fdaudens/Model-Drops-Tracker

Any features you'd like to see added?
#AIModels
·
reacted to thomwolf's post with ❤️ 7 months ago
view post
Post
5136
A Little guide to building Large Language Models in 2024

This is a post-recording of a 75min lecture I gave two weeks ago on how to train a LLM from scratch in 2024. I tried to keep it short and comprehensive – focusing on concepts that are crucial for training good LLM but often hidden in tech reports.

In the lecture, I introduce the students to all the important concepts/tools/techniques for training good performance LLM:
* finding, preparing and evaluating web scale data
* understanding model parallelism and efficient training
* fine-tuning/aligning models
* fast inference

There is of course many things and details missing and that I should have added to it, don't hesitate to tell me you're most frustrating omission and I'll add it in a future part. In particular I think I'll add more focus on how to filter topics well and extensively and maybe more practical anecdotes and details.

Now that I recorded it I've been thinking this could be part 1 of a two-parts series with a 2nd fully hands-on video on how to run all these steps with some libraries and recipes we've released recently at HF around LLM training (and could be easily adapted to your other framework anyway):
*datatrove for all things web-scale data preparation: https://github.com/huggingface/datatrove
*nanotron for lightweight 4D parallelism LLM training: https://github.com/huggingface/nanotron
*lighteval for in-training fast parallel LLM evaluations: https://github.com/huggingface/lighteval

Here is the link to watch the lecture on Youtube: https://www.youtube.com/watch?v=2-SPH9hIKT8
And here is the link to the Google slides: https://docs.google.com/presentation/d/1IkzESdOwdmwvPxIELYJi8--K3EZ98_cL6c5ZcLKSyVg/edit#slide=id.p

Enjoy and happy to hear feedback on it and what to add, correct, extend in a second part.
  • 2 replies
·
New activity in m-a-p/neo_sft_phase2 8 months ago