|
--- |
|
license: cc-by-sa-4.0 |
|
datasets: |
|
- jerteh/cc100-sr-jerteh |
|
- jerteh/SrpWiki |
|
- jerteh/SrpELTeC |
|
- srwac |
|
language: |
|
- sr |
|
tags: |
|
- srpski |
|
- Serbian |
|
- RoBERTa |
|
- BERT |
|
- MaskedLM |
|
--- |
|
|
|
<h4><i class="highlight-container"><b class="highlight">jerteh-355</b></i> — |
|
Najveći BERT model specijalno obučen za srpski jezik.</h4> |
|
|
|
<img src="cover.png" class="cover"> |
|
|
|
<!--div id="zastava"> |
|
<div class="grb"> |
|
<img src="https://www.ai.gov.rs/img/logo_60x120-2.png" style="position:relative; left:30px; z-index:10; height:85px"> |
|
</div> |
|
<table width=100% style="border:0px"> |
|
<tr style= |
|
"background-color:#C6363C;width:100%;border:0px;height:30px"><td></td></tr |
|
> |
|
<tr style="background-color:#0C4076;width:100%;border:0px;height:30px"><td></td></tr> |
|
<tr style="background-color:#ffffff;width:100%;border:0px;height:30px"><td></td></tr> |
|
</table> |
|
</div--> |
|
|
|
<ul class="features"> |
|
<li>Vektorizuje reči, ili dopunjava nedostajuće reči u tekstu</li> |
|
<li>Zasnovan na RoBERTa-large arhitekturi, 355 miliona parametara</li> |
|
<li>Obučavan na korpusu srpskog jezika veličine 4 milijarde tokena</li> |
|
<li>Najbolji rezultati u modelovanju maskiranog jezika za srpski!</li> |
|
<li>Jednaka podrška unosa i na ćirilici i na latinici!</li> |
|
</ul> |
|
|
|
Pored skupova navedenih u metapodacima, model je obučavan i na ostalim korpusima [Društva za jezičke resurse i tehnologije](https://jerteh.rs), |
|
uključujući korpuse savremenog srpskog jezika: SrpKor2013 i SrpKor2021, |
|
kao i korpus [PDRS 1.0](https://www.clarin.si/repository/xmlui/handle/11356/1752) razvijen od strane Instituta za Srpski jezik SANU. |
|
|
|
|
|
## Upotreba |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> generator = pipeline('fill-mask', model='jerteh/jerteh-355') |
|
>>> unmasker("Kada bi čovek znao gde će pasti on bi<mask>.") |
|
``` |
|
|
|
``` |
|
[{'score': 0.2131326049566269, 'token': 11379, 'token_str': ' pao', 'sequence': 'Kada bi čovek znao gde će pasti on bi pao.'}, |
|
{'score': 0.18836458027362823, 'token': 20536, 'token_str': ' pobegao', 'sequence': 'Kada bi čovek znao gde će pasti on bi pobegao.'}, |
|
{'score': 0.07937008887529373, 'token': 10799, 'token_str': ' umro', 'sequence': 'Kada bi čovek znao gde će pasti on bi umro.'}, |
|
{'score': 0.04340635612607002, 'token': 7797, 'token_str': ' otišao', 'sequence': 'Kada bi čovek znao gde će pasti on bi otišao.'}, |
|
{'score': 0.038474686443805695, 'token': 25984, 'token_str': ' odustao', 'sequence': 'Kada bi čovek znao gde će pasti on bi odustao.'}] |
|
``` |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
>>> from torch import LongTensor, no_grad |
|
>>> from scipy import spatial |
|
>>> tokenizer = AutoTokenizer.from_pretrained('jerteh/jerteh-355') |
|
>>> model = AutoModelForMaskedLM.from_pretrained('jerteh/jerteh-355', output_hidden_states=True) |
|
>>> x = " pas" |
|
>>> y = " mačka" |
|
>>> z = " svemir" |
|
>>> tensor_x = LongTensor(tokenizer.encode(x, add_special_tokens=False)).unsqueeze(0) |
|
>>> tensor_y = LongTensor(tokenizer.encode(y, add_special_tokens=False)).unsqueeze(0) |
|
>>> tensor_z = LongTensor(tokenizer.encode(z, add_special_tokens=False)).unsqueeze(0) |
|
>>> model.eval() |
|
>>> with no_grad(): |
|
>>> vektor_x = model(input_ids=tensor_x).hidden_states[-1].squeeze() |
|
>>> vektor_y = model(input_ids=tensor_y).hidden_states[-1].squeeze() |
|
>>> vektor_z = model(input_ids=tensor_z).hidden_states[-1].squeeze() |
|
>>> print(spatial.distance.cosine(vektor_x, vektor_y)) |
|
>>> print(spatial.distance.cosine(vektor_x, vektor_z)) |
|
``` |
|
|
|
``` |
|
0.029090166091918945 |
|
0.0369451642036438 |
|
``` |
|
|
|
<h4>U slučaju potrebe za bržim modelom, pogledajte <a href="https://huggingface.co/jerteh/jerteh-125" class="highlight-container"> |
|
<b class="highlight">jerteh-125</b></a> — mali BERT model za srpski jezik.</h4> |
|
|
|
<h4>U slučaju potrebe za generativnim modelom, pogledajte <a href="https://huggingface.co/jerteh/gpt2-orao" class="highlight-container"> |
|
<b class="highlight">gpt2-orao</b></a> i <a href="https://huggingface.co/jerteh/gpt2-vrabac" class="highlight-container"> |
|
<b class="highlight">gpt2-vrabac</b></a></h4> |
|
|
|
|
|
|
|
<div class="inline-flex flex-col" style="line-height: 1.5;"> |
|
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Autor</div> |
|
<a href="https://huggingface.co/procesaur"> |
|
<div class="flex"> |
|
<div |
|
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; |
|
background-size: cover; background-image: url('https://cdn-uploads.huggingface.co/production/uploads/1673534533167-63bc254fb8c61b8aa496a39b.jpeg?w=200&h=200&f=face')"> |
|
</div> |
|
</div> |
|
</a> |
|
<div style="text-align: center; font-size: 16px; font-weight: 800">Mihailo Škorić</div> |
|
<div> |
|
<a href="https://huggingface.co/procesaur"> |
|
<div style="text-align: center; font-size: 14px;">@procesaur</div> |
|
</a> |
|
</div> |
|
</div> |
|
|
|
|
|
<style> |
|
|
|
.features: { |
|
font-weight:bold; |
|
} |
|
|
|
.cover { |
|
width: 100%; |
|
margin-bottom: "5pt" |
|
} |
|
|
|
.highlight-container, .highlight { |
|
position: relative; |
|
text-decoration:none |
|
} |
|
|
|
.highlight-container { |
|
display: inline-block; |
|
|
|
} |
|
|
|
.highlight{ |
|
color:white; |
|
text-transform:uppercase; |
|
font-size: 16pt; |
|
|
|
} |
|
|
|
.highlight-container{ |
|
padding:5px 10px |
|
} |
|
|
|
.highlight-container:before { |
|
content: " "; |
|
display: block; |
|
height: 100%; |
|
width: 100%; |
|
margin-left: 0px; |
|
margin-right: 0px; |
|
position: absolute; |
|
background: #e80909; |
|
transform: rotate(2deg); |
|
top: -1px; |
|
left: -1px; |
|
border-radius: 20% 25% 20% 24%; |
|
padding: 10px 18px 18px 10px; |
|
} |
|
|
|
div.grb, #zastava>table { |
|
position:absolute; |
|
top:0px; |
|
left: 0px; |
|
margin:0px |
|
} |
|
|
|
div.grb>img, #zastava>table{ |
|
margin:0px |
|
} |
|
|
|
#zastava { |
|
position: relative; |
|
margin-bottom:120px |
|
} |
|
|
|
</style> |
|
|