vit-emotions-fp16 / README.md
jetaimejeteveux's picture
End of training
17fb491 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-emotions-fp16
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9859375

vit-emotions-fp16

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0725
  • Accuracy: 0.9859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.3965 0.4938
No log 2.0 80 1.4154 0.425
No log 3.0 120 1.3729 0.4562
No log 4.0 160 1.3532 0.4562
No log 5.0 200 1.2993 0.5062
No log 6.0 240 1.3438 0.4938
No log 7.0 280 1.3741 0.5
No log 8.0 320 1.5267 0.4313
No log 9.0 360 1.2778 0.5375
No log 10.0 400 1.3864 0.5062
No log 11.0 440 1.4221 0.4875
No log 12.0 480 1.5059 0.5062
0.7596 13.0 520 1.5004 0.5188
0.7596 14.0 560 1.4539 0.5125
0.7596 15.0 600 1.5219 0.5375
0.7596 16.0 640 1.6179 0.4813
0.7596 17.0 680 1.4562 0.55
0.7596 18.0 720 1.5473 0.4875
0.7596 19.0 760 1.5820 0.5188
0.7596 20.0 800 1.5877 0.5125
0.7596 21.0 840 1.4965 0.55
0.7596 22.0 880 1.5947 0.5375
0.7596 23.0 920 1.4672 0.5437
0.7596 24.0 960 1.7930 0.5
0.2328 25.0 1000 1.8033 0.4875
0.2328 26.0 1040 1.7193 0.5312
0.2328 27.0 1080 1.8072 0.4813
0.2328 28.0 1120 1.6767 0.5437
0.2328 29.0 1160 1.6138 0.5625
0.2328 30.0 1200 1.8484 0.4938
0.2328 31.0 1240 1.7691 0.5062
0.2328 32.0 1280 1.7797 0.5062
0.2328 33.0 1320 1.7575 0.5375
0.2328 34.0 1360 1.7550 0.5062
0.2328 35.0 1400 1.7933 0.5
0.2328 36.0 1440 1.7056 0.5563
0.2328 37.0 1480 1.8739 0.4938
0.1517 38.0 1520 1.7637 0.5188
0.1517 39.0 1560 1.7178 0.5563
0.1517 40.0 1600 1.9114 0.5
0.1517 41.0 1640 1.8453 0.5188
0.1517 42.0 1680 1.7571 0.5625
0.1517 43.0 1720 1.7757 0.5437
0.1517 44.0 1760 1.8389 0.5125
0.1517 45.0 1800 1.8109 0.5375
0.1517 46.0 1840 1.8537 0.4688
0.1517 47.0 1880 1.7422 0.5563
0.1517 48.0 1920 1.7807 0.5687
0.1517 49.0 1960 1.8111 0.525
0.1045 50.0 2000 1.9057 0.5125

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2