|
--- |
|
pipeline_tag: text-generation |
|
language: |
|
- multilingual |
|
inference: false |
|
license: cc-by-nc-4.0 |
|
library_name: transformers |
|
--- |
|
|
|
<br><br> |
|
|
|
<p align="center"> |
|
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px"> |
|
</p> |
|
|
|
<p align="center"> |
|
<b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b> |
|
</p> |
|
|
|
[Blog](https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-markdown-and-json) | [Colab](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing) |
|
|
|
# Intro |
|
|
|
Jina `ReaderLM-v2` is the second generation of Jina ReaderLM, a **1.5B** parameter language model that converts raw HTML into beautifully formatted markdown or JSON with superior accuracy and improved longer context handling. |
|
|
|
`ReaderLM-v2` features several significant improvements: |
|
|
|
- **Better Markdown Generation**: `ReaderLM-v2` generates markdown with improved formatting and readability. |
|
- **JSON Output**: `ReaderLM-v2` can output JSON format, which is useful for downstream processing. |
|
- **Longer Context Handling**: `ReaderLM-v2` can handle up to 512K tokens of combined input and output length. |
|
- **Multilingual Support**: `ReaderLM-v2` supports 29 languages, including English, Chinese, Japanese, Korean, French, Spanish, Portuguese, German, Italian, Russian, Vietnamese, Thai, Arabic, and more. |
|
|
|
|
|
# Get Started |
|
|
|
## On Google Colab |
|
The easiest way to experience reader-lm is by running [our Colab notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing), |
|
which demonstrates HTML-to-markdown conversion, JSON extraction, and instruction-following using the HackerNews frontpage as an example. |
|
The notebook is optimized for Colab's free T4 GPU tier and requires vllm and triton for acceleration and running. |
|
Feel free to test it with any website. |
|
For HTML-to-markdown tasks, simply input the raw HTML without any prefix instructions. |
|
However, JSON output and instruction-based extraction require specific prompt formatting as shown in the examples. |
|
|
|
## Local |
|
|
|
To use this model, you need to install `transformers`: |
|
|
|
```bash |
|
pip install transformers |
|
``` |
|
|
|
|
|
### HTML to Markdown Conversion |
|
|
|
Then, you can use the model to convert HTML to Markdown as follows: |
|
|
|
```python |
|
# pip install transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import re |
|
|
|
# (REMOVE <SCRIPT> to </script> and variations) |
|
SCRIPT_PATTERN = r'<[ ]*script.*?\/[ ]*script[ ]*>' # mach any char zero or more times |
|
|
|
# (REMOVE HTML <STYLE> to </style> and variations) |
|
STYLE_PATTERN = r'<[ ]*style.*?\/[ ]*style[ ]*>' # mach any char zero or more times |
|
|
|
# (REMOVE HTML <META> to </meta> and variations) |
|
META_PATTERN = r'<[ ]*meta.*?>' # mach any char zero or more times |
|
|
|
# (REMOVE HTML COMMENTS <!-- to --> and variations) |
|
COMMENT_PATTERN = r'<[ ]*!--.*?--[ ]*>' # mach any char zero or more times |
|
|
|
# (REMOVE HTML LINK <LINK> to </link> and variations) |
|
LINK_PATTERN = r'<[ ]*link.*?>' # mach any char zero or more times |
|
|
|
# (REPLACE base64 images) |
|
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>' |
|
|
|
# (REPLACE <svg> to </svg> and variations) |
|
SVG_PATTERN = r'(<svg[^>]*>)(.*?)(<\/svg>)' |
|
|
|
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str: |
|
return re.sub( |
|
SVG_PATTERN, |
|
lambda match: f"{match.group(1)}{new_content}{match.group(3)}", |
|
html, |
|
flags=re.DOTALL, |
|
) |
|
|
|
def replace_base64_images(html: str, new_image_src: str = "#") -> str: |
|
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html) |
|
|
|
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False): |
|
html = re.sub(SCRIPT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL)) |
|
html = re.sub(STYLE_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL)) |
|
html = re.sub(META_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL)) |
|
html = re.sub(COMMENT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL)) |
|
html = re.sub(LINK_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL)) |
|
|
|
if clean_svg: |
|
html = replace_svg(html) |
|
|
|
if clean_base64: |
|
html = replace_base64_images(html) |
|
|
|
return html |
|
|
|
|
|
device = "cuda" # for GPU usage or "cpu" for CPU usage |
|
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2") |
|
model = AutoModelForCausalLM.from_pretrained("jinaai/ReaderLM-v2").to(device) |
|
|
|
def create_prompt(text: str, tokenizer = None, instruction: str = None, schema: str = None) -> str: |
|
""" |
|
Create a prompt for the model with optional instruction and JSON schema. |
|
|
|
Args: |
|
text (str): The input HTML text |
|
tokenizer: The tokenizer to use |
|
instruction (str, optional): Custom instruction for the model |
|
schema (str, optional): JSON schema for structured extraction |
|
|
|
Returns: |
|
str: The formatted prompt |
|
""" |
|
|
|
if not instruction: |
|
instruction = "Extract the main content from the given HTML and convert it to Markdown format." |
|
|
|
if schema: |
|
instruction = 'Extract the specified information from a list of news threads and present it in a structured JSON format.' |
|
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json{schema}```" |
|
else: |
|
prompt = f"{instruction}\n```html\n{text}\n```" |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": prompt, |
|
} |
|
] |
|
|
|
return tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
# example html content |
|
html = "<html><body><h1>Hello, world!</h1></body></html>" |
|
|
|
# clean the html content, remove scripts, styles, comments, etc. |
|
html = clean_html(html) |
|
|
|
input_prompt = create_prompt(html) |
|
|
|
print(input_prompt) |
|
|
|
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device) |
|
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
You can also specify the content you want to extract from the HTML by providing a custom instruction. |
|
For example, if you want to extract the menu items from the HTML content, you can create a prompt like this: |
|
|
|
```python |
|
instruction = "Extract the menu items from the given HTML and convert it to Markdown format." |
|
input_prompt = create_prompt(html, instruction=instruction) |
|
|
|
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device) |
|
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### HTML to JSON Conversion |
|
|
|
To extract structured information from HTML content and convert it to JSON, you can create a prompt with a JSON schema. |
|
|
|
```python |
|
schema = """ |
|
{ |
|
"type": "object", |
|
"properties": { |
|
"title": { |
|
"type": "string" |
|
}, |
|
"author": { |
|
"type": "string" |
|
}, |
|
"date": { |
|
"type": "string" |
|
}, |
|
"content": { |
|
"type": "string" |
|
} |
|
}, |
|
"required": ["title", "author", "date", "content"] |
|
} |
|
""" |
|
|
|
input_prompt = create_prompt(html, schema=schema) |
|
|
|
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device) |
|
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08) |
|
|
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
|
|
## AWS Sagemaker & Azure Marketplace |
|
|
|
TBD |
|
|