Edit model card

torgo_tiny_finetune_F04

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3499
  • Wer: 26.6553

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.6368 0.85 500 0.3637 28.9474
0.11 1.69 1000 0.3521 36.5025
0.0969 2.54 1500 0.2911 46.3497
0.0679 3.39 2000 0.2895 27.0798
0.053 4.24 2500 0.3115 26.9949
0.0361 5.08 3000 0.2972 28.8625
0.0278 5.93 3500 0.3036 26.9100
0.0233 6.78 4000 0.3311 59.0832
0.0148 7.63 4500 0.3000 27.6740
0.0149 8.47 5000 0.3317 37.6061
0.0105 9.32 5500 0.2975 29.4567
0.0087 10.17 6000 0.3593 27.1647
0.0075 11.02 6500 0.2840 28.0985
0.004 11.86 7000 0.3760 26.7402
0.0039 12.71 7500 0.3477 33.4465
0.0029 13.56 8000 0.3595 26.0611
0.0022 14.41 8500 0.3429 29.5416
0.0013 15.25 9000 0.2967 24.0238
0.0004 16.1 9500 0.3539 28.4380
0.0003 16.95 10000 0.3646 25.1273
0.0001 17.8 10500 0.3638 25.4669
0.0001 18.64 11000 0.3502 26.3158
0.0001 19.49 11500 0.3499 26.6553

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jindaznb/torgo_tiny_finetune_F04

Finetuned
(1210)
this model