Edit model card

torgo_tiny_finetune_M04

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3396
  • Wer: 32.3430

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.6227 0.84 500 0.3265 33.1070
0.1027 1.69 1000 0.3360 32.6825
0.1001 2.53 1500 0.4014 60.0170
0.0686 3.37 2000 0.3220 40.3226
0.048 4.22 2500 0.3146 31.3243
0.0366 5.06 3000 0.3477 57.8098
0.0262 5.9 3500 0.3054 21.8166
0.0237 6.75 4000 0.3007 43.4635
0.0153 7.59 4500 0.2969 24.8727
0.0149 8.43 5000 0.3628 52.8014
0.0112 9.27 5500 0.3670 29.7963
0.0096 10.12 6000 0.3354 24.5331
0.007 10.96 6500 0.3464 57.0458
0.0052 11.8 7000 0.3246 30.1358
0.0037 12.65 7500 0.3677 50.7640
0.0021 13.49 8000 0.3359 34.0407
0.002 14.33 8500 0.3406 41.7657
0.0011 15.18 9000 0.3296 36.3328
0.0004 16.02 9500 0.3359 33.5314
0.0 16.86 10000 0.3381 40.2377
0.0003 17.71 10500 0.3388 35.1443
0.0 18.55 11000 0.3410 33.4465
0.0001 19.39 11500 0.3396 32.3430

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jindaznb/torgo_tiny_finetune_M04

Finetuned
(1210)
this model