File size: 3,954 Bytes
d4ac0b0
 
4d24ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ac0b0
 
e3091a5
d4ac0b0
 
 
e3091a5
d4ac0b0
 
e3091a5
 
 
df5c637
e3091a5
 
 
 
d4ac0b0
09e328b
d4ac0b0
 
4d24ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: apache-2.0
model-index:
- name: KoSoLAR-10.7B-v0.2_1.3_dedup_p
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.05
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jingyeom/KoSoLAR-10.7B-v0.2_1.3_dedup_p
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.63
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jingyeom/KoSoLAR-10.7B-v0.2_1.3_dedup_p
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.61
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jingyeom/KoSoLAR-10.7B-v0.2_1.3_dedup_p
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 52.69
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jingyeom/KoSoLAR-10.7B-v0.2_1.3_dedup_p
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 80.51
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jingyeom/KoSoLAR-10.7B-v0.2_1.3_dedup_p
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 48.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jingyeom/KoSoLAR-10.7B-v0.2_1.3_dedup_p
      name: Open LLM Leaderboard
---
## Model
base_model : yanolja/KoSOLAR-10.7B-v0.2
## Dataset
* 공개 데이터 수집
* Deduplicating Training Data Makes Language Models Better 알고리즘 활용

## Code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "jingyeom/KoSoLAR-10.7B-v0.2_1.3_dedup"
model = AutoModelForCausalLM.from_pretrained(
        model_name,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

## Benchmark
**[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)**

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jingyeom__KoSoLAR-10.7B-v0.2_1.3_dedup_p)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |65.43|
|AI2 Reasoning Challenge (25-Shot)|63.05|
|HellaSwag (10-Shot)              |83.63|
|MMLU (5-Shot)                    |64.61|
|TruthfulQA (0-shot)              |52.69|
|Winogrande (5-shot)              |80.51|
|GSM8k (5-shot)                   |48.07|