summarization-diary / README.md
jjae's picture
Upload tokenizer
19c2d1c verified
|
raw
history blame
1.56 kB
metadata
license: mit
tags:
  - kobart-summarization-diary
  - generated_from_trainer
base_model: gogamza/kobart-summarization
model-index:
  - name: summary
    results: []

summary

This model is a fine-tuned version of gogamza/kobart-summarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
1.4823 1.42 500 0.3805
0.2472 2.85 1000 0.3757
0.1306 4.27 1500 0.4135
0.0718 5.7 2000 0.4368
0.0421 7.12 2500 0.4518

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0